These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
334 related items for PubMed ID: 9535414
21. Potentiation of bradykinin effect by angiotensin-converting enzyme inhibition does not correlate with angiotensin-converting enzyme activity in the rat mesenteric arteries. Sivieri DO, Bispo-da-Silva LB, Oliveira EB, Resende AC, Salgado MC. Hypertension; 2007 Jul; 50(1):110-5. PubMed ID: 17470724 [Abstract] [Full Text] [Related]
22. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides. Jaspard E, Wei L, Alhenc-Gelas F. J Biol Chem; 1993 May 05; 268(13):9496-503. PubMed ID: 7683654 [Abstract] [Full Text] [Related]
24. Mechanisms involved in the angiotensin II-independent hypotensive action of ACE inhibitors. Hecker M, Pörsti I, Busse R. Braz J Med Biol Res; 1994 Aug 05; 27(8):1917-21. PubMed ID: 7749381 [Abstract] [Full Text] [Related]
25. Angiotensin-(1-7) potentiates responses to bradykinin but does not change responses to angiotensin I. Greco AJ, Master RG, Fokin A, Baber SR, Kadowitz PJ. Can J Physiol Pharmacol; 2006 Nov 05; 84(11):1163-75. PubMed ID: 17218981 [Abstract] [Full Text] [Related]
27. Protein kinase C and phosphatase inhibitors block the ability of angiotensin I-converting enzyme inhibitors to resensitize the receptor to bradykinin without altering the primary effects of bradykinin. Marcic BM, Erdös EG. J Pharmacol Exp Ther; 2000 Aug 05; 294(2):605-12. PubMed ID: 10900238 [Abstract] [Full Text] [Related]
28. Pathways for angiotensin-(1---7) metabolism in pulmonary and renal tissues. Allred AJ, Diz DI, Ferrario CM, Chappell MC. Am J Physiol Renal Physiol; 2000 Nov 05; 279(5):F841-50. PubMed ID: 11053044 [Abstract] [Full Text] [Related]
29. Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Campbell DJ, Alexiou T, Xiao HD, Fuchs S, McKinley MJ, Corvol P, Bernstein KE. Hypertension; 2004 Apr 05; 43(4):854-9. PubMed ID: 14769811 [Abstract] [Full Text] [Related]
30. Single-domain angiotensin I converting enzyme (kininase II): characterization and properties. Deddish PA, Wang LX, Jackman HL, Michel B, Wang J, Skidgel RA, Erdös EG. J Pharmacol Exp Ther; 1996 Dec 05; 279(3):1582-9. PubMed ID: 8968386 [Abstract] [Full Text] [Related]
31. Effects of neutral endopeptidase inhibition and combined angiotensin converting enzyme and neutral endopeptidase inhibition on angiotensin and bradykinin peptides in rats. Campbell DJ, Anastasopoulos F, Duncan AM, James GM, Kladis A, Briscoe TA. J Pharmacol Exp Ther; 1998 Nov 05; 287(2):567-77. PubMed ID: 9808682 [Abstract] [Full Text] [Related]
32. Effect of chronic angiotensin converting enzyme inhibition on angiotensin I and bradykinin metabolism in rats. Stanziola L, Greene LJ, Santos RA. Am J Hypertens; 1999 Oct 05; 12(10 Pt 1):1021-9. PubMed ID: 10560789 [Abstract] [Full Text] [Related]
33. Novel roles of the renal angiotensin-converting enzyme. Giani JF, Veiras LC, Shen JZY, Bernstein EA, Cao D, Okwan-Duodu D, Khan Z, Gonzalez-Villalobos RA, Bernstein KE. Mol Cell Endocrinol; 2021 Jun 01; 529():111257. PubMed ID: 33781839 [Abstract] [Full Text] [Related]
34. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Ahmad S, Varagic J, VonCannon JL, Groban L, Collawn JF, Dell'Italia LJ, Ferrario CM. Biochem Biophys Res Commun; 2016 Sep 16; 478(2):559-64. PubMed ID: 27465904 [Abstract] [Full Text] [Related]
35. Kinins, receptors, kininases and inhibitors--where did they lead us? Erdös EG, Marcic BM. Biol Chem; 2001 Jan 16; 382(1):43-7. PubMed ID: 11258670 [Abstract] [Full Text] [Related]
36. Different contributions of the angiotensin-converting enzyme C-domain and N-domain in subjects with the angiotensin-converting enzyme II and DD genotype. van Esch JH, van Gool JM, de Bruin RJ, Payne JR, Montgomery HE, Hectors M, Deinum J, Dive V, Jan Danser AH. J Hypertens; 2008 Apr 16; 26(4):706-13. PubMed ID: 18327080 [Abstract] [Full Text] [Related]
37. Angiotensin II enhances noradrenaline release from sympathetic nerves of the rat prostate via a novel angiotensin receptor: implications for the pathophysiology of benign prostatic hyperplasia. Fabiani ME, Sourial M, Thomas WG, Johnston CI, Johnston CI, Frauman AG. J Endocrinol; 2001 Oct 16; 171(1):97-108. PubMed ID: 11572794 [Abstract] [Full Text] [Related]
38. Interaction between neutral endopeptidase and angiotensin converting enzyme inhibition in rats with myocardial infarction: effects on cardiac hypertrophy and angiotensin and bradykinin peptide levels. Duncan AM, James GM, Anastasopoulos F, Kladis A, Briscoe TA, Campbell DJ. J Pharmacol Exp Ther; 1999 Apr 16; 289(1):295-303. PubMed ID: 10087017 [Abstract] [Full Text] [Related]
39. Do the cardiovascular effects of angiotensin-converting enzyme (ACE) I involve ACE-independent mechanisms? new insights from proline-rich peptides of Bothrops jararaca. Ianzer D, Santos RA, Etelvino GM, Xavier CH, de Almeida Santos J, Mendes EP, Machado LT, Prezoto BC, Dive V, de Camargo AC. J Pharmacol Exp Ther; 2007 Aug 16; 322(2):795-805. PubMed ID: 17475904 [Abstract] [Full Text] [Related]
40. Selective inhibition of the C-domain of angiotensin I converting enzyme by bradykinin potentiating peptides. Cotton J, Hayashi MA, Cuniasse P, Vazeux G, Ianzer D, De Camargo AC, Dive V. Biochemistry; 2002 May 14; 41(19):6065-71. PubMed ID: 11994001 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]