These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 9546602
1. Steady state changes in mitochondrial electrical potential and proton gradient in perfused liver from rats fed a high fat diet. Mollica MP, Iossa S, Liverini G, Soboll S. Mol Cell Biochem; 1998 Jan; 178(1-2):213-7. PubMed ID: 9546602 [Abstract] [Full Text] [Related]
2. Stimulation of oxygen consumption following addition of lipid substrates in liver and skeletal muscle from rats fed a high-fat diet. Mollica MP, Iossa S, Liverini G, Soboll S. Metabolism; 1999 Oct; 48(10):1230-5. PubMed ID: 10535383 [Abstract] [Full Text] [Related]
3. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet. Iossa S, Mollica MP, Lionetti L, Barletta A, Liverini G. Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023 [Abstract] [Full Text] [Related]
4. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver. Soboll S, Scholz R, Heldt HW. Eur J Biochem; 1978 Jun 15; 87(2):377-90. PubMed ID: 668699 [Abstract] [Full Text] [Related]
12. The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria. Czyz A, Szewczyk A, Nałecz MJ, Wojtczak L. Biochem Biophys Res Commun; 1995 May 05; 210(1):98-104. PubMed ID: 7741755 [Abstract] [Full Text] [Related]
13. Fat intake reverses the beneficial effects of low caloric intake on skeletal muscle mitochondrial H(2)O(2) production. Garait B, Couturier K, Servais S, Letexier D, Perrin D, Batandier C, Rouanet JL, Sibille B, Rey B, Leverve X, Favier R. Free Radic Biol Med; 2005 Nov 01; 39(9):1249-61. PubMed ID: 16214040 [Abstract] [Full Text] [Related]
14. Mitochondrial transmembrane potential and pH gradient during anoxia. Andersson BS, Aw TY, Jones DP. Am J Physiol; 1987 Apr 01; 252(4 Pt 1):C349-55. PubMed ID: 3565555 [Abstract] [Full Text] [Related]
15. The Effect of N-Acetylcysteine on Respiratory Enzymes, ADP/ATP Ratio, Glutathione Metabolism, and Nitrosative Stress in the Salivary Gland Mitochondria of Insulin Resistant Rats. Zalewska A, Szarmach I, Żendzian-Piotrowska M, Maciejczyk M. Nutrients; 2020 Feb 12; 12(2):. PubMed ID: 32059375 [Abstract] [Full Text] [Related]
16. Control of cellular redox potential as measured in a steady-state, cell-free system. Burat MK, Burat T, Davis-Van Thienen WI, Davis EJ. Arch Biochem Biophys; 1984 Nov 15; 235(1):150-8. PubMed ID: 6238571 [Abstract] [Full Text] [Related]
17. Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver. Soboll S, Elbers R, Scholz R, Heldt HW. Hoppe Seylers Z Physiol Chem; 1980 Jan 15; 361(1):69-76. PubMed ID: 7358333 [Abstract] [Full Text] [Related]
19. The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes. Nobes CD, Hay WW, Brand MD. J Biol Chem; 1990 Aug 05; 265(22):12910-5. PubMed ID: 2376580 [Abstract] [Full Text] [Related]
20. Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: a possible role for SirT3 activation. Teodoro JS, Duarte FV, Gomes AP, Varela AT, Peixoto FM, Rolo AP, Palmeira CM. Mitochondrion; 2013 Nov 05; 13(6):637-46. PubMed ID: 24041461 [Abstract] [Full Text] [Related] Page: [Next] [New Search]