These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 9547400

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae.
    Rhode WS, Cooper NP.
    Hear Res; 1993 Mar; 66(1):31-45. PubMed ID: 8473244
    [Abstract] [Full Text] [Related]

  • 3. Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea.
    Cooper NP, Rhode WS.
    J Neurophysiol; 1997 Jul; 78(1):261-70. PubMed ID: 9242278
    [Abstract] [Full Text] [Related]

  • 4. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE, Russell IJ.
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [Abstract] [Full Text] [Related]

  • 5. The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane.
    Russell IJ, Nilsen KE.
    Proc Natl Acad Sci U S A; 1997 Mar 18; 94(6):2660-4. PubMed ID: 9122252
    [Abstract] [Full Text] [Related]

  • 6. Nonlinearity in the apical turn of living guinea pig cochlea.
    Khanna SM, Hao LF.
    Hear Res; 1999 Sep 18; 135(1-2):89-104. PubMed ID: 10491958
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The influence on predicted harmonic and distortion product generation of the position of the nonlinearity within cochlear micromechanical models.
    How JA, Elliott SJ, Lineton B.
    J Acoust Soc Am; 2010 Feb 18; 127(2):652-5. PubMed ID: 20136186
    [Abstract] [Full Text] [Related]

  • 9. Two-tone suppression in cochlear mechanics.
    Cooper NP.
    J Acoust Soc Am; 1996 May 18; 99(5):3087-98. PubMed ID: 8642119
    [Abstract] [Full Text] [Related]

  • 10. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL.
    J Acoust Soc Am; 1987 Jul 18; 82(1):139-54. PubMed ID: 3624635
    [Abstract] [Full Text] [Related]

  • 11. [Relationship of distortion product in cochlea with cochlear activity revealed by laser interferometry].
    Long X, Zhang Y, Lu J, Long C.
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Sep 18; 29(18):1644-7. PubMed ID: 26790268
    [Abstract] [Full Text] [Related]

  • 12. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A, Oghalai JS.
    J Physiol; 2017 Jul 01; 595(13):4549-4561. PubMed ID: 28382742
    [Abstract] [Full Text] [Related]

  • 13. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC, Fettiplace R.
    J Physiol; 1980 Sep 01; 306():79-125. PubMed ID: 7463380
    [Abstract] [Full Text] [Related]

  • 14. The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea.
    Murugasu E, Russell IJ.
    J Neurosci; 1996 Jan 01; 16(1):325-32. PubMed ID: 8613799
    [Abstract] [Full Text] [Related]

  • 15. Two-tone suppression of basilar membrane vibrations in the base of the guinea pig cochlea using "low-side" suppressors.
    Geisler CD, Nuttall AL.
    J Acoust Soc Am; 1997 Jul 01; 102(1):430-40. PubMed ID: 9228805
    [Abstract] [Full Text] [Related]

  • 16. [The relation between cochlear distortion products and frequency tuning characteristics revealed by laser interferometery].
    Zhang YP, Huang G, Long XM, Yan BY, Long ZC.
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Sep 20; 31(18):1423-1426. PubMed ID: 29797998
    [Abstract] [Full Text] [Related]

  • 17. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A, van Maarseveen JT, Scarfone E, Ulfendahl M, Flock B, Flock A.
    Acta Physiol Scand; 1997 Oct 20; 161(2):239-52. PubMed ID: 9366967
    [Abstract] [Full Text] [Related]

  • 18. Nonlinear mechanics at the apex of the guinea-pig cochlea.
    Cooper NP, Rhode WS.
    Hear Res; 1995 Feb 20; 82(2):225-43. PubMed ID: 7775288
    [Abstract] [Full Text] [Related]

  • 19. Electrophysiological responses in guinea pig cochlea to low frequency sound stimuli: distortion of cochlear microphonic (CM) wave form.
    Maehara N, Sadamoto T, Yamamura K.
    Eur J Appl Physiol Occup Physiol; 1983 Feb 20; 51(1):85-95. PubMed ID: 6684037
    [Abstract] [Full Text] [Related]

  • 20. The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III. Basilar membrane motion.
    Patuzzi R, Sellick PM, Johnstone BM.
    Hear Res; 1984 Jan 20; 13(1):19-27. PubMed ID: 6706859
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.