These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 9547714
1. Determination of aspartame and its degradation and epimerization products by capillary electrophoresis. Sabah S, Scriba GK. J Pharm Biomed Anal; 1998 Feb; 16(6):1089-96. PubMed ID: 9547714 [Abstract] [Full Text] [Related]
2. Structure, dynamics, and stability of beta-cyclodextrin inclusion complexes of aspartame and neotame. Garbow JR, Likos JJ, Schroeder SA. J Agric Food Chem; 2001 Apr; 49(4):2053-60. PubMed ID: 11308366 [Abstract] [Full Text] [Related]
3. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values. Chuy S, Bell LN. J Food Sci; 2009 Apr; 74(1):C56-61. PubMed ID: 19200086 [Abstract] [Full Text] [Related]
4. Simultaneous determination of saccharin and aspartame in commercial noncaloric sweeteners using the PLS-2 multivariate calibration method and validation by capillary electrophoresis. Cantarelli MA, Pellerano RG, Marchevsky EJ, Camiña JM. J Agric Food Chem; 2008 Oct 22; 56(20):9345-9. PubMed ID: 18826230 [Abstract] [Full Text] [Related]
5. Stability considerations of aspartame in the direct analysis of artificial sweeteners in water samples using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Berset JD, Ochsenbein N. Chemosphere; 2012 Jul 22; 88(5):563-9. PubMed ID: 22503463 [Abstract] [Full Text] [Related]
6. Sub-minute method for simultaneous determination of aspartame, cyclamate, acesulfame-K and saccharin in food and pharmaceutical samples by capillary zone electrophoresis. Vistuba JP, Dolzan MD, Vitali L, de Oliveira MA, Micke GA. J Chromatogr A; 2015 May 29; 1396():148-52. PubMed ID: 25895731 [Abstract] [Full Text] [Related]
7. Direct stereochemical resolution of aspartame stereoisomers and their degradation products by high-performance liquid chromatography on a chiral crown ether based stationary phase. Motellier S, Wainer IW. J Chromatogr; 1990 Sep 21; 516(2):365-73. PubMed ID: 2150410 [Abstract] [Full Text] [Related]
8. Degradation kinetics of an aspartyl-tripeptide-derived diketopiperazine under forced conditions. Brückner C, Fahr A, Imhof D, Scriba GK. J Pharm Sci; 2012 Nov 21; 101(11):4178-90. PubMed ID: 22899465 [Abstract] [Full Text] [Related]
9. Identification of degradation products of aspartyl tripeptides by capillary electrophoresis-tandem mass spectrometry. De Boni S, Neusüss C, Pelzing M, Scriba GK. Electrophoresis; 2003 Mar 21; 24(5):874-82. PubMed ID: 12627450 [Abstract] [Full Text] [Related]
10. Capillary electrophoresis analysis of the degradation of the aspartyl tripeptide Phe-Asp-GlyOH at pH 2.0 and 7.4 under forced conditions. Conrad U, Taichrib A, Neusüss C, Scriba GK. J Pharm Biomed Anal; 2010 Feb 05; 51(3):640-8. PubMed ID: 19875263 [Abstract] [Full Text] [Related]
11. Analysis of isomeric glutamyl peptides by capillary electrophoresis. Application to stability studies. Schücker SC, Scriba GK. J Chromatogr A; 2000 Aug 04; 888(1-2):275-9. PubMed ID: 10949493 [Abstract] [Full Text] [Related]
12. Determination of aspartame and its major decomposition products in foods. Prodolliet J, Bruelhart M. J AOAC Int; 1993 Aug 04; 76(2):275-82. PubMed ID: 8471853 [Abstract] [Full Text] [Related]
13. Resolution of an intense sweetener mixture by use of a flow injection sensor with on-line solid-phase extraction. Application to saccharin and aspartame in sweets and drinks. Capitán-Vallvey LF, Valencia MC, Arana Nicolás E, García-Jiménez JF. Anal Bioanal Chem; 2006 May 04; 385(2):385-91. PubMed ID: 16804990 [Abstract] [Full Text] [Related]
14. Capillary electrophoresis analysis of hydrolysis, isomerization and enantiomerization of aspartyl model tripeptides in acidic and alkaline solution. De Boni S, Scriba GK. J Pharm Biomed Anal; 2007 Jan 04; 43(1):49-56. PubMed ID: 16846713 [Abstract] [Full Text] [Related]
15. pH-dependence of complexion constants and complex mobility in capillary electrophoresis separations of dipeptide enantiomers. Sabbah S, Süss F, Scriba GK. Electrophoresis; 2001 Sep 04; 22(15):3163-70. PubMed ID: 11589275 [Abstract] [Full Text] [Related]
16. Ion-pair high-performance liquid chromatographic analysis of aspartame and related products. Verzella G, Bagnasco G, Mangia A. J Chromatogr; 1985 Dec 06; 349(1):83-9. PubMed ID: 4086646 [Abstract] [Full Text] [Related]
17. Comparison of capillary zone electrophoresis with high-performance liquid chromatography for the determination of additives in foodstuffs. Jimidar M, Hamoir TP, Foriers A, Massart DL. J Chromatogr; 1993 Apr 23; 636(1):179-86. PubMed ID: 8491835 [Abstract] [Full Text] [Related]
18. Liquid chromatographic determination of aspartame in dry beverage bases and sweetener tablets with confirmation by thin layer chromatography. Daniels DH, Joe FL, Warner CR, Fazio T. J Assoc Off Anal Chem; 1984 Apr 23; 67(3):513-5. PubMed ID: 6746473 [Abstract] [Full Text] [Related]
19. Simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero by on-line postcolumn derivation fluorescence detection and ultraviolet detection coupled two-dimensional high-performance liquid chromatography. Cheng C, Wu SC. J Chromatogr A; 2011 May 20; 1218(20):2976-83. PubMed ID: 21481403 [Abstract] [Full Text] [Related]
20. Isomerization and epimerization of the aspartyl tetrapeptide Ala-Phe-Asp-GlyOH at pH 10-A CE study. Brückner C, Bunz SC, Imhof D, Neusüss C, Scriba GK. Electrophoresis; 2013 Sep 20; 34(18):2666-73. PubMed ID: 23533053 [Abstract] [Full Text] [Related] Page: [Next] [New Search]