These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 9548753
1. Formation of native disulfide bonds in endothelin-1. Structural evidence for the involvement of a highly specific salt bridge between the prosequence and the endothelin-1 sequence. Aumelas A, Kubo S, Chino N, Chiche L, Forest E, Roumestand C, Kobayashi Y. Biochemistry; 1998 Apr 14; 37(15):5220-30. PubMed ID: 9548753 [Abstract] [Full Text] [Related]
2. High-resolution X-ray structure of the unexpectedly stable dimer of the [Lys(-2)-Arg(-1)-des(17-21)]endothelin-1 peptide. Hoh F, Cerdan R, Kaas Q, Nishi Y, Chiche L, Kubo S, Chino N, Kobayashi Y, Dumas C, Aumelas A. Biochemistry; 2004 Dec 07; 43(48):15154-68. PubMed ID: 15568807 [Abstract] [Full Text] [Related]
3. The [Lys(-2)-Arg(-1)-des(17-21)]-endothelin-1 peptide retains the specific Arg(-1)-Asp8 salt bridge but reveals discrepancies between NMR data and molecular dynamics simulations. Kaas Q, Aumelas A, Kubo S, Chino N, Kobayashi Y, Chiche L. Biochemistry; 2002 Sep 17; 41(37):11099-108. PubMed ID: 12220174 [Abstract] [Full Text] [Related]
4. The chimeric peptide [Lys(-2)-Arg(-1)]-sarafotoxin-S6b, composed of the endothelin pro-sequence and sarafotoxin, retains the salt-bridge staple between Arg(-1) and Asp8 previously observed in [Lys(-2)-Arg(-1)]-endothelin. Implications of this salt-bridge in the contractile activity and the oxidative folding reaction. Aumelas A, Chiche L, Kubo S, Chino N, Watanabe TX, Kobayashi Y. Eur J Biochem; 1999 Dec 17; 266(3):977-85. PubMed ID: 10583392 [Abstract] [Full Text] [Related]
6. Role of disulfide bonds for the structure and folding of proguanylin. Lauber T, Schulz A, Rösch P, Marx UC. Biochemistry; 2004 Aug 10; 43(31):10050-7. PubMed ID: 15287732 [Abstract] [Full Text] [Related]
7. Design, synthesis, and conformation of a model peptide of endothelin with cystine-stabilized alpha-helix motif. Mihara H, Tomizaki KY, Nishino N, Fujimoto T, Tamaoki H, Kobayashi Y. Biopolymers; 1994 Jul 10; 34(7):963-7. PubMed ID: 8054474 [Abstract] [Full Text] [Related]
8. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor. Liu Y, Breslauer K, Anderson S. Biochemistry; 1997 May 06; 36(18):5323-35. PubMed ID: 9154914 [Abstract] [Full Text] [Related]
9. Structure determination of the three disulfide bond isomers of alpha-conotoxin GI: a model for the role of disulfide bonds in structural stability. Gehrmann J, Alewood PF, Craik DJ. J Mol Biol; 1998 May 01; 278(2):401-15. PubMed ID: 9571060 [Abstract] [Full Text] [Related]
10. The role of disulfide bonds in the structure and function of murine epidermal growth factor (mEGF). Alewood D, Nielsen K, Alewood PF, Craik DJ, Andrews P, Nerrie M, White S, Domagala T, Walker F, Rothacker J, Burgess AW, Nice EC. Growth Factors; 2005 Jun 01; 23(2):97-110. PubMed ID: 16019431 [Abstract] [Full Text] [Related]
11. Isomorphous replacement of cystine with selenocystine in endothelin: oxidative refolding, biological and conformational properties of [Sec3,Sec11,Nle7]-endothelin-1. Pegoraro S, Fiori S, Rudolph-Böhner S, Watanabe TX, Moroder L. J Mol Biol; 1998 Dec 04; 284(3):779-92. PubMed ID: 9826515 [Abstract] [Full Text] [Related]
12. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation. Drakopoulou E, Vizzavona J, Neyton J, Aniort V, Bouet F, Virelizier H, Ménez A, Vita C. Biochemistry; 1998 Feb 03; 37(5):1292-301. PubMed ID: 9477955 [Abstract] [Full Text] [Related]
13. Role of a salt bridge in the model protein crambin explored by chemical protein synthesis: X-ray structure of a unique protein analogue, [V15A]crambin-alpha-carboxamide. Bang D, Tereshko V, Kossiakoff AA, Kent SB. Mol Biosyst; 2009 Jul 03; 5(7):750-6. PubMed ID: 19562114 [Abstract] [Full Text] [Related]
14. Role of the prosequence of guanylin. Schulz A, Marx UC, Hidaka Y, Shimonishi Y, Rösch P, Forssmann WG, Adermann K. Protein Sci; 1999 Sep 03; 8(9):1850-9. PubMed ID: 10493586 [Abstract] [Full Text] [Related]
15. Deletion of a single amino acid changes the folding of an apamin hybrid sequence peptide to that of endothelin. Volkman BF, Wemmer DE. Biopolymers; 1997 Apr 05; 41(4):451-60. PubMed ID: 9080780 [Abstract] [Full Text] [Related]
16. Stability and structure-forming properties of the two disulfide bonds of alpha-conotoxin GI. Kaerner A, Rabenstein DL. Biochemistry; 1999 Apr 27; 38(17):5459-70. PubMed ID: 10220333 [Abstract] [Full Text] [Related]
17. Role of Asn(2) and Glu(7) residues in the oxidative folding and on the conformation of the N-terminal loop of apamin. Le-Nguyen D, Chiche L, Hoh F, Martin-Eauclaire MF, Dumas C, Nishi Y, Kobayashi Y, Aumelas A. Biopolymers; 1999 Apr 27; 86(5-6):447-62. PubMed ID: 17486576 [Abstract] [Full Text] [Related]
18. Native and non-native structure in a protein-folding intermediate: spectroscopic studies of partially reduced IGF-I and an engineered alanine model. Hua QX, Narhi L, Jia W, Arakawa T, Rosenfeld R, Hawkins N, Miller JA, Weiss MA. J Mol Biol; 1996 Jun 07; 259(2):297-313. PubMed ID: 8656430 [Abstract] [Full Text] [Related]
19. Assignment of disulphide bonds in synthetic endothelin-1 isomers by fast atom bombardment mass spectrometry. Ishibashi Y, Kikuchi T, Wakimasu M, Mizuta E, Fujino M. Biol Mass Spectrom; 1991 Nov 07; 20(11):703-8. PubMed ID: 1799581 [Abstract] [Full Text] [Related]
20. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Storch EM, Grinstead JS, Campbell AP, Daggett V, Atkins WM. Biochemistry; 1999 Apr 20; 38(16):5065-75. PubMed ID: 10213609 [Abstract] [Full Text] [Related] Page: [Next] [New Search]