These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
106 related items for PubMed ID: 9554963
41. Distribution of serotonin-containing neurons and their pathways in the supraoesophageal ganglion of the cockroach Periplaneta americana (L.) as revealed by immunocytochemistry. Klemm N, Steinbusch HW, Sundler F. J Comp Neurol; 1984 May 20; 225(3):387-95. PubMed ID: 6373847 [Abstract] [Full Text] [Related]
42. Distribution of the octopamine receptor AmOA1 in the honey bee brain. Sinakevitch I, Mustard JA, Smith BH. PLoS One; 2011 Jan 18; 6(1):e14536. PubMed ID: 21267078 [Abstract] [Full Text] [Related]
44. A simple mushroom body in an African scarabid beetle. Larsson MC, Hansson BS, Strausfeld NJ. J Comp Neurol; 2004 Oct 18; 478(3):219-32. PubMed ID: 15368535 [Abstract] [Full Text] [Related]
45. Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. Sinakevitch I, Strausfeld NJ. J Comp Neurol; 2006 Jan 20; 494(3):460-75. PubMed ID: 16320256 [Abstract] [Full Text] [Related]
46. Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Meyer EP, Matute C, Streit P, Nässel DR. Histochemistry; 1986 Jan 20; 84(3):207-16. PubMed ID: 3710830 [Abstract] [Full Text] [Related]
47. Three-dimensional average-shape atlas of the honeybee brain and its applications. Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege HC, Menzel R. J Comp Neurol; 2005 Nov 07; 492(1):1-19. PubMed ID: 16175557 [Abstract] [Full Text] [Related]
48. Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain. Okada R, Sakura M, Mizunami M. J Comp Neurol; 2003 Mar 31; 458(2):158-74. PubMed ID: 12596256 [Abstract] [Full Text] [Related]
49. Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain. Okada R, Sakura M, Mizunami M. J Comp Neurol; 2003 May 05; 459(3):158-74. PubMed ID: 12830795 [Abstract] [Full Text] [Related]
50. Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies. Li Y, Strausfeld NJ. J Comp Neurol; 1999 Jul 12; 409(4):647-63. PubMed ID: 10376745 [Abstract] [Full Text] [Related]
51. Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: correspondence with the mushroom body ground pattern. Wolff G, Harzsch S, Hansson BS, Brown S, Strausfeld N. J Comp Neurol; 2012 Sep 01; 520(13):2824-46. PubMed ID: 22547177 [Abstract] [Full Text] [Related]
52. Influence of receptor axons on the formation of olfactory glomeruli in a hemimetabolous insect, the cockroach Periplaneta americana. Salecker I, Boeckh J. J Comp Neurol; 1996 Jun 24; 370(2):262-79. PubMed ID: 8808734 [Abstract] [Full Text] [Related]
54. FMRFamide-like immunocytochemistry in the brain and subesophageal ganglion of Triatoma infestans (Insecta: Heteroptera). Coexpression with beta-pigment-dispersing hormone and small cardioactive peptide B. Settembrini BP, Villar MJ. Cell Tissue Res; 2005 Aug 24; 321(2):299-310. PubMed ID: 15947966 [Abstract] [Full Text] [Related]
55. Topographically distinct visual and olfactory inputs to the mushroom body in the Swallowtail butterfly, Papilio xuthus. Kinoshita M, Shimohigasshi M, Tominaga Y, Arikawa K, Homberg U. J Comp Neurol; 2015 Jan 01; 523(1):162-82. PubMed ID: 25209173 [Abstract] [Full Text] [Related]
56. Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx. Butcher NJ, Friedrich AB, Lu Z, Tanimoto H, Meinertzhagen IA. J Comp Neurol; 2012 Jul 01; 520(10):2185-201. PubMed ID: 22237598 [Abstract] [Full Text] [Related]
57. Morphology of higher-order ocellar interneurons in the cockroach brain. Mizunami M. J Comp Neurol; 1995 Nov 13; 362(2):293-304. PubMed ID: 8576440 [Abstract] [Full Text] [Related]
58. Distribution of GABA-like immunoreactivity in the octopus brain. Cornwell CJ, Messenger JB, Williamson R. Brain Res; 1993 Sep 10; 621(2):353-7. PubMed ID: 8242349 [Abstract] [Full Text] [Related]
59. GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons. Ingham CA, Bolam JP, Smith AD. J Comp Neurol; 1988 Jul 08; 273(2):263-82. PubMed ID: 3417904 [Abstract] [Full Text] [Related]
60. Development of laminar organization in the mushroom bodies of the cockroach: Kenyon cell proliferation, outgrowth, and maturation. Farris SM, Strausfeld NJ. J Comp Neurol; 2001 Oct 22; 439(3):331-51. PubMed ID: 11596058 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]