These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 9558312
1. Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis. Luque I, Todd MJ, Gómez J, Semo N, Freire E. Biochemistry; 1998 Apr 28; 37(17):5791-7. PubMed ID: 9558312 [Abstract] [Full Text] [Related]
3. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. Gómez J, Freire E. J Mol Biol; 1995 Sep 22; 252(3):337-50. PubMed ID: 7563055 [Abstract] [Full Text] [Related]
4. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations. Verkhivker GM. Pac Symp Biocomput; 1996 Sep 22; ():638-52. PubMed ID: 9390264 [Abstract] [Full Text] [Related]
6. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development. Beck ZQ, Hervio L, Dawson PE, Elder JH, Madison EL. Virology; 2000 Sep 01; 274(2):391-401. PubMed ID: 10964781 [Abstract] [Full Text] [Related]
8. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Muzammil S, Ross P, Freire E. Biochemistry; 2003 Jan 28; 42(3):631-8. PubMed ID: 12534275 [Abstract] [Full Text] [Related]
12. HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity. Velazquez-Campoy A, Todd MJ, Freire E. Biochemistry; 2000 Mar 07; 39(9):2201-7. PubMed ID: 10694385 [Abstract] [Full Text] [Related]
15. Kinetic and thermodynamic characterization of HIV-1 protease inhibitors. Shuman CF, Hämäläinen MD, Danielson UH. J Mol Recognit; 2004 Mar 07; 17(2):106-19. PubMed ID: 15027031 [Abstract] [Full Text] [Related]
16. Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor. Velazquez-Campoy A, Luque I, Todd MJ, Milutinovich M, Kiso Y, Freire E. Protein Sci; 2000 Sep 07; 9(9):1801-9. PubMed ID: 11045625 [Abstract] [Full Text] [Related]
17. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease. Chellappan S, Kairys V, Fernandes MX, Schiffer C, Gilson MK. Proteins; 2007 Aug 01; 68(2):561-7. PubMed ID: 17474129 [Abstract] [Full Text] [Related]
18. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Lepsík M, Kríz Z, Havlas Z. Proteins; 2004 Nov 01; 57(2):279-93. PubMed ID: 15340915 [Abstract] [Full Text] [Related]
19. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. Kar P, Lipowsky R, Knecht V. J Phys Chem B; 2013 May 16; 117(19):5793-805. PubMed ID: 23614718 [Abstract] [Full Text] [Related]
20. Suppression of HIV-1 protease inhibitor resistance by phosphonate-mediated solvent anchoring. Cihlar T, He GX, Liu X, Chen JM, Hatada M, Swaminathan S, McDermott MJ, Yang ZY, Mulato AS, Chen X, Leavitt SA, Stray KM, Lee WA. J Mol Biol; 2006 Oct 27; 363(3):635-47. PubMed ID: 16979654 [Abstract] [Full Text] [Related] Page: [Next] [New Search]