These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 9562365

  • 1. Effect of oral creatine ingestion on parameters of the work rate-time relationship and time to exhaustion in high-intensity cycling.
    Smith JC, Stephens DP, Hall EL, Jackson AW, Earnest CP.
    Eur J Appl Physiol Occup Physiol; 1998 Mar; 77(4):360-5. PubMed ID: 9562365
    [Abstract] [Full Text] [Related]

  • 2. The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry.
    Miura A, Sato H, Sato H, Whipp BJ, Fukuba Y.
    Ergonomics; 2000 Jan; 43(1):133-41. PubMed ID: 10661696
    [Abstract] [Full Text] [Related]

  • 3. The curvature constant parameter of the power-duration curve for varied-power exercise.
    Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp BJ.
    Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698
    [Abstract] [Full Text] [Related]

  • 4. Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship.
    Ferguson C, Rossiter HB, Whipp BJ, Cathcart AJ, Murgatroyd SR, Ward SA.
    J Appl Physiol (1985); 2010 Apr; 108(4):866-74. PubMed ID: 20093659
    [Abstract] [Full Text] [Related]

  • 5. Estimation of critical power with nonlinear and linear models.
    Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ.
    Med Sci Sports Exerc; 1995 Oct; 27(10):1430-8. PubMed ID: 8531615
    [Abstract] [Full Text] [Related]

  • 6. Effects of pedaling speed on the power-duration relationship for high-intensity exercise.
    Carnevale TJ, Gaesser GA.
    Med Sci Sports Exerc; 1991 Feb; 23(2):242-6. PubMed ID: 2017022
    [Abstract] [Full Text] [Related]

  • 7. A comparison of methods of estimating anaerobic work capacity.
    Hill DW, Smith JC.
    Ergonomics; 1993 Dec; 36(12):1495-500. PubMed ID: 8287856
    [Abstract] [Full Text] [Related]

  • 8. Creatine supplementation and the total work performed during 15-s and 1-min bouts of maximal cycling.
    Schneider DA, McDonough PJ, Fadel PJ, Berwick JP.
    Aust J Sci Med Sport; 1997 Sep; 29(3):65-8. PubMed ID: 9302488
    [Abstract] [Full Text] [Related]

  • 9. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF, Chidnok W, Vanhatalo A, Jones AM.
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [Abstract] [Full Text] [Related]

  • 10. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L, Thomas D.
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [Abstract] [Full Text] [Related]

  • 11. Effect of work and recovery durations on W' reconstitution during intermittent exercise.
    Skiba PF, Jackman S, Clarke D, Vanhatalo A, Jones AM.
    Med Sci Sports Exerc; 2014 Jul; 46(7):1433-40. PubMed ID: 24492634
    [Abstract] [Full Text] [Related]

  • 12. The effect of oral creatine supplementation on the curvature constant parameter of the power-duration curve for cycle ergometry in humans.
    Miura A, Kino F, Kajitani S, Sato H, Fukuba Y.
    Jpn J Physiol; 1999 Apr; 49(2):169-74. PubMed ID: 10393351
    [Abstract] [Full Text] [Related]

  • 13. Maximal power output during incremental cycling test is dependent on the curvature constant of the power-time relationship.
    Souza KM, de Lucas RD, do Nascimento Salvador PC, Guglielmo LG, Caritá RA, Greco CC, Denadai BS.
    Appl Physiol Nutr Metab; 2015 Sep; 40(9):895-8. PubMed ID: 26288395
    [Abstract] [Full Text] [Related]

  • 14. Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans.
    Miura A, Endo M, Sato H, Sato H, Barstow TJ, Fukuba Y.
    Eur J Appl Physiol; 2002 Jul; 87(3):238-44. PubMed ID: 12111284
    [Abstract] [Full Text] [Related]

  • 15. Intensity-dependent tolerance to exercise after attaining V(O2) max in humans.
    Coats EM, Rossiter HB, Day JR, Miura A, Fukuba Y, Whipp BJ.
    J Appl Physiol (1985); 2003 Aug; 95(2):483-90. PubMed ID: 12665540
    [Abstract] [Full Text] [Related]

  • 16. Effects of nitrate on the power-duration relationship for severe-intensity exercise.
    Kelly J, Vanhatalo A, Wilkerson DP, Wylie LJ, Jones AM.
    Med Sci Sports Exerc; 2013 Sep; 45(9):1798-806. PubMed ID: 23475164
    [Abstract] [Full Text] [Related]

  • 17. Effects of oral N-acetylcysteine on fatigue, critical power, and W' in exercising humans.
    Corn SD, Barstow TJ.
    Respir Physiol Neurobiol; 2011 Sep 15; 178(2):261-8. PubMed ID: 21740986
    [Abstract] [Full Text] [Related]

  • 18. Effects of pacing strategy on work done above critical power during high-intensity exercise.
    Chidnok W, Dimenna FJ, Bailey SJ, Wilkerson DP, Vanhatalo A, Jones AM.
    Med Sci Sports Exerc; 2013 Jul 15; 45(7):1377-85. PubMed ID: 23377832
    [Abstract] [Full Text] [Related]

  • 19. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.
    Schäfer LU, Hayes M, Dekerle J.
    Exp Physiol; 2019 Feb 15; 104(2):209-219. PubMed ID: 30468691
    [Abstract] [Full Text] [Related]

  • 20. Creatine supplementation improves performance above critical power but does not influence the magnitude of neuromuscular fatigue at task failure.
    Schäfer LU, Hayes M, Dekerle J.
    Exp Physiol; 2019 Dec 15; 104(12):1881-1891. PubMed ID: 31512330
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.