These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 9573012
1. Enhanced megakaryocyte and erythroid development from normal human CD34(+) cells: consequence of enforced expression of SCL. Elwood NJ, Zogos H, Pereira DS, Dick JE, Begley CG. Blood; 1998 May 15; 91(10):3756-65. PubMed ID: 9573012 [Abstract] [Full Text] [Related]
2. Enforced TAL-1 expression stimulates primitive, erythroid and megakaryocytic progenitors but blocks the granulopoietic differentiation program. Valtieri M, Tocci A, Gabbianelli M, Luchetti L, Masella B, Vitelli L, Botta R, Testa U, Condorelli GL, Peschle C. Cancer Res; 1998 Feb 01; 58(3):562-9. PubMed ID: 9458106 [Abstract] [Full Text] [Related]
3. Opposing effects of the basic helix-loop-helix transcription factor SCL on erythroid and monocytic differentiation. Hoang T, Paradis E, Brady G, Billia F, Nakahara K, Iscove NN, Kirsch IR. Blood; 1996 Jan 01; 87(1):102-11. PubMed ID: 8547631 [Abstract] [Full Text] [Related]
4. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Hall MA, Curtis DJ, Metcalf D, Elefanty AG, Sourris K, Robb L, Gothert JR, Jane SM, Begley CG. Proc Natl Acad Sci U S A; 2003 Feb 04; 100(3):992-7. PubMed ID: 12552125 [Abstract] [Full Text] [Related]
5. Characterization of DNA-binding-dependent and -independent functions of SCL/TAL1 during human erythropoiesis. Ravet E, Reynaud D, Titeux M, Izac B, Fichelson S, Roméo PH, Dubart-Kupperschmitt A, Pflumio F. Blood; 2004 May 01; 103(9):3326-35. PubMed ID: 14715640 [Abstract] [Full Text] [Related]
6. Retroviral transfer of the recombinant human erythropoietin receptor gene into single hematopoietic stem/progenitor cells from human cord blood increases the number of erythropoietin-dependent erythroid colonies. Lu L, Ge Y, Li ZH, Keeble W, Kabat D, Bagby GC, Broxmeyer HE, Hoatlin ME. Blood; 1996 Jan 15; 87(2):525-34. PubMed ID: 8555474 [Abstract] [Full Text] [Related]
7. Distinct mechanisms direct SCL/tal-1 expression in erythroid cells and CD34 positive primitive myeloid cells. Bockamp EO, McLaughlin F, Göttgens B, Murrell AM, Elefanty AG, Green AR. J Biol Chem; 1997 Mar 28; 272(13):8781-90. PubMed ID: 9079714 [Abstract] [Full Text] [Related]
9. Transcription of the SCL gene in erythroid and CD34 positive primitive myeloid cells is controlled by a complex network of lineage-restricted chromatin-dependent and chromatin-independent regulatory elements. Göttgens B, McLaughlin F, Bockamp EO, Fordham JL, Begley CG, Kosmopoulos K, Elefanty AG, Green AR. Oncogene; 1997 Nov 13; 15(20):2419-28. PubMed ID: 9395238 [Abstract] [Full Text] [Related]
10. Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Buske C, Feuring-Buske M, Antonchuk J, Rosten P, Hogge DE, Eaves CJ, Humphries RK. Blood; 2001 Apr 15; 97(8):2286-92. PubMed ID: 11290589 [Abstract] [Full Text] [Related]
11. Transcription factor SCL/TAL1 mediates the phosphorylation of MEK/ERK pathway in umbilical cord blood CD34⁺ stem cells during hematopoietic differentiation. Zhou RQ, Wu JH, Gong YP, Guo Y, Xing HY. Blood Cells Mol Dis; 2014 Apr 15; 53(1-2):39-46. PubMed ID: 24405580 [Abstract] [Full Text] [Related]
12. Colony formation of human fetal CD34+ hematopoietic cells. Ek S, Markling L, Ringdén O, Kjeldgaard A, Westgren M. Fetal Diagn Ther; 1996 Apr 15; 11(5):326-34. PubMed ID: 8894627 [Abstract] [Full Text] [Related]
13. Enhancing effects of co-transduction of both human erythropoietin receptor and c-kit cDNAs into hematopoietic stem/progenitor cells from cord blood on proliferation and differentiation of erythroid progenitors. Dai MS, Heinrich MC, Broxmeyer HE, Lu L. Cytokines Cell Mol Ther; 2000 Mar 15; 6(1):1-8. PubMed ID: 10976533 [Abstract] [Full Text] [Related]
14. Coordinate expression and developmental role of Id2 protein and TAL1/E2A heterodimer in erythroid progenitor differentiation. Condorelli G, Vitelli L, Valtieri M, Marta I, Montesoro E, Lulli V, Baer R, Peschle C. Blood; 1995 Jul 01; 86(1):164-75. PubMed ID: 7540882 [Abstract] [Full Text] [Related]
16. Proliferative response of human marrow myeloid progenitor cells to in vivo treatment with granulocyte colony-stimulating factor alone and in combination with interleukin-3 after autologous bone marrow transplantation. Lemoli RM, Fortuna A, Fogli M, Gherlinzoni F, Rosti G, Catani L, Gozzetti A, Miggiano MC, Tura S. Exp Hematol; 1995 Dec 01; 23(14):1520-6. PubMed ID: 8542941 [Abstract] [Full Text] [Related]
17. Cytokine-dependent ex vivo expansion of early subsets of CD34+ cord blood myeloid progenitors is enhanced by cord blood plasma, but expansion of the more mature subsets of progenitors is favored. Ruggieri L, Heimfeld S, Broxmeyer HE. Blood Cells; 1994 Dec 01; 20(2-3):436-54. PubMed ID: 7538350 [Abstract] [Full Text] [Related]
18. Steel factor sustains SCL expression and the survival of purified CD34+ bone marrow cells in the absence of detectable cell differentiation. Caceres-Cortes JR, Krosl G, Tessier N, Hugo P, Hoang T. Stem Cells; 2001 Dec 01; 19(1):59-70. PubMed ID: 11209091 [Abstract] [Full Text] [Related]
19. PDCD2 knockdown inhibits erythroid but not megakaryocytic lineage differentiation of human hematopoietic stem/progenitor cells. Kokorina NA, Granier CJ, Zakharkin SO, Davis S, Rabson AB, Sabaawy HE. Exp Hematol; 2012 Dec 01; 40(12):1028-1042.e3. PubMed ID: 22922207 [Abstract] [Full Text] [Related]
20. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Debili N, Coulombel L, Croisille L, Katz A, Guichard J, Breton-Gorius J, Vainchenker W. Blood; 1996 Aug 15; 88(4):1284-96. PubMed ID: 8695846 [Abstract] [Full Text] [Related] Page: [Next] [New Search]