These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The Bradyrhizobium japonicum rpoH1 gene encoding a sigma 32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes. Narberhaus F, Weiglhofer W, Fischer HM, Hennecke H. J Bacteriol; 1996 Sep; 178(18):5337-46. PubMed ID: 8808920 [Abstract] [Full Text] [Related]
5. The dnaKJ operon belongs to the sigma32-dependent class of heat shock genes in Bradyrhizobium japonicum. Minder AC, Narberhaus F, Babst M, Hennecke H, Fischer HM. Mol Gen Genet; 1997 Mar 26; 254(2):195-206. PubMed ID: 9108282 [Abstract] [Full Text] [Related]
6. Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium. Barnett MJ, Bittner AN, Toman CJ, Oke V, Long SR. J Bacteriol; 2012 Sep 26; 194(18):4983-94. PubMed ID: 22773790 [Abstract] [Full Text] [Related]
7. Multiple groESL operons are not key targets of RpoH1 and RpoH2 in Sinorhizobium meliloti. Bittner AN, Oke V. J Bacteriol; 2006 May 26; 188(10):3507-15. PubMed ID: 16672605 [Abstract] [Full Text] [Related]
8. Identification of the heat-shock sigma factor RpoH and a second RpoH-like protein in Sinorhizobium meliloti. Oke V, Rushing BG, Fisher EJ, Moghadam-Tabrizi M, Long SR. Microbiology (Reading); 2001 Sep 26; 147(Pt 9):2399-2408. PubMed ID: 11535780 [Abstract] [Full Text] [Related]
9. Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti. Ono Y, Mitsui H, Sato T, Minamisawa K. Mol Gen Genet; 2001 Feb 26; 264(6):902-12. PubMed ID: 11254138 [Abstract] [Full Text] [Related]
10. The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses. Martínez-Salazar JM, Sandoval-Calderón M, Guo X, Castillo-Ramírez S, Reyes A, Loza MG, Rivera J, Alvarado-Affantranger X, Sánchez F, González V, Dávila G, Ramírez-Romero MA. Microbiology (Reading); 2009 Feb 26; 155(Pt 2):386-397. PubMed ID: 19202087 [Abstract] [Full Text] [Related]
11. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease. Obrist M, Milek S, Klauck E, Hengge R, Narberhaus F. Microbiology (Reading); 2007 Aug 26; 153(Pt 8):2560-2571. PubMed ID: 17660420 [Abstract] [Full Text] [Related]
12. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter. Wu J, Newton A. J Bacteriol; 1997 Jan 26; 179(2):514-21. PubMed ID: 8990305 [Abstract] [Full Text] [Related]
13. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. Wu J, Newton A. J Bacteriol; 1996 Apr 26; 178(7):2094-101. PubMed ID: 8606189 [Abstract] [Full Text] [Related]
14. Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum. Minder AC, Fischer HM, Hennecke H, Narberhaus F. J Bacteriol; 2000 Jan 26; 182(1):14-22. PubMed ID: 10613857 [Abstract] [Full Text] [Related]
15. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. Zhou YN, Kusukawa N, Erickson JW, Gross CA, Yura T. J Bacteriol; 1988 Aug 26; 170(8):3640-9. PubMed ID: 2900239 [Abstract] [Full Text] [Related]
16. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus. Reisenauer A, Mohr CD, Shapiro L. J Bacteriol; 1996 Apr 26; 178(7):1919-27. PubMed ID: 8606166 [Abstract] [Full Text] [Related]