These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


264 related items for PubMed ID: 9603811

  • 21. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications.
    Panke S, de Lorenzo V, Kaiser A, Witholt B, Wubbolts MG.
    Appl Environ Microbiol; 1999 Dec; 65(12):5619-23. PubMed ID: 10584030
    [Abstract] [Full Text] [Related]

  • 22. The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3.
    O'Connor K, Duetz W, Wind B, Dobson AD.
    Appl Environ Microbiol; 1996 Oct; 62(10):3594-9. PubMed ID: 8967774
    [Abstract] [Full Text] [Related]

  • 23. Production of Enantiopure Chiral Epoxides with E. coli Expressing Styrene Monooxygenase.
    Gyuranová D, Štadániová R, Hegyi Z, Fischer R, Rebroš M.
    Molecules; 2021 Mar 10; 26(6):. PubMed ID: 33802034
    [Abstract] [Full Text] [Related]

  • 24. Coregulation by phenylacetyl-coenzyme A-responsive PaaX integrates control of the upper and lower pathways for catabolism of styrene by Pseudomonas sp. strain Y2.
    del Peso-Santos T, Bartolomé-Martín D, Fernández C, Alonso S, García JL, Díaz E, Shingler V, Perera J.
    J Bacteriol; 2006 Jul 10; 188(13):4812-21. PubMed ID: 16788190
    [Abstract] [Full Text] [Related]

  • 25. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120DeltaC.
    Park JB, Bühler B, Panke S, Witholt B, Schmid A.
    Biotechnol Bioeng; 2007 Dec 15; 98(6):1219-29. PubMed ID: 17514751
    [Abstract] [Full Text] [Related]

  • 26. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
    Bühler B, Park JB, Blank LM, Schmid A.
    Appl Environ Microbiol; 2008 Mar 15; 74(5):1436-46. PubMed ID: 18192422
    [Abstract] [Full Text] [Related]

  • 27. Construction of a bacterial biosensor for styrene.
    Alonso S, Navarro-Llorens JM, Tormo A, Perera J.
    J Biotechnol; 2003 May 08; 102(3):301-6. PubMed ID: 12730005
    [Abstract] [Full Text] [Related]

  • 28. Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase.
    Yen KM, Karl MR, Blatt LM, Simon MJ, Winter RB, Fausset PR, Lu HS, Harcourt AA, Chen KK.
    J Bacteriol; 1991 Sep 08; 173(17):5315-27. PubMed ID: 1885512
    [Abstract] [Full Text] [Related]

  • 29. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase.
    Hartmans S, van der Werf MJ, de Bont JA.
    Appl Environ Microbiol; 1990 May 08; 56(5):1347-51. PubMed ID: 2339888
    [Abstract] [Full Text] [Related]

  • 30. A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation.
    Corrado ML, Knaus T, Mutti FG.
    Chembiochem; 2018 Apr 04; 19(7):679-686. PubMed ID: 29378090
    [Abstract] [Full Text] [Related]

  • 31. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding phenylacetaldehyde reductase from styrene-assimilating Corynebacterium sp. strain ST-10.
    Wang JC, Sakakibara M, Liu JQ, Dairi T, Itoh N.
    Appl Microbiol Biotechnol; 1999 Sep 04; 52(3):386-92. PubMed ID: 10531651
    [Abstract] [Full Text] [Related]

  • 32. Purification and characterization of phenylacetaldehyde reductase from a styrene-assimilating Corynebacterium strain, ST-10.
    Itoh N, Morihama R, Wang J, Okada K, Mizuguchi N.
    Appl Environ Microbiol; 1997 Oct 04; 63(10):3783-8. PubMed ID: 9327541
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources.
    McKenna R, Pugh S, Thompson B, Nielsen DR.
    Biotechnol J; 2013 Dec 04; 8(12):1465-75. PubMed ID: 23801570
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity.
    Volmer J, Neumann C, Bühler B, Schmid A.
    Appl Environ Microbiol; 2014 Oct 04; 80(20):6539-48. PubMed ID: 25128338
    [Abstract] [Full Text] [Related]

  • 38. Constitutively solvent-tolerant Pseudomonas taiwanensis VLB120∆ C∆ ttgV supports particularly high-styrene epoxidation activities when grown under glucose excess conditions.
    Volmer J, Lindmeyer M, Seipp J, Schmid A, Bühler B.
    Biotechnol Bioeng; 2019 May 04; 116(5):1089-1101. PubMed ID: 30636283
    [Abstract] [Full Text] [Related]

  • 39. Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3.
    Mooney A, O'Leary ND, Dobson AD.
    Appl Environ Microbiol; 2006 Feb 04; 72(2):1302-9. PubMed ID: 16461680
    [Abstract] [Full Text] [Related]

  • 40. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.
    Heine T, Tucker K, Okonkwo N, Assefa B, Conrad C, Scholtissek A, Schlömann M, Gassner G, Tischler D.
    Appl Biochem Biotechnol; 2017 Apr 04; 181(4):1590-1610. PubMed ID: 27830466
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.