These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1408 related items for PubMed ID: 9605578
1. Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed. McCulloch AI, Randall MD. Br J Pharmacol; 1998 Apr; 123(8):1700-6. PubMed ID: 9605578 [Abstract] [Full Text] [Related]
2. Characterization and modulation of EDHF-mediated relaxations in the rat isolated superior mesenteric arterial bed. McCulloch AI, Bottrill FE, Randall MD, Hiley CR. Br J Pharmacol; 1997 Apr; 120(8):1431-8. PubMed ID: 9113362 [Abstract] [Full Text] [Related]
3. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. White R, Hiley CR. Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801 [Abstract] [Full Text] [Related]
4. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED. Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786 [Abstract] [Full Text] [Related]
5. Relative roles of endothelial relaxing factors in cyclosporine-induced impairment of cholinergic and beta-adrenergic renal vasodilations. El-Mas MM, Mohy El-Din MM, El-Gowilly SM, Sharabi FM. Eur J Pharmacol; 2004 Mar 08; 487(1-3):149-58. PubMed ID: 15033387 [Abstract] [Full Text] [Related]
6. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery. Dong H, Waldron GJ, Galipeau D, Cole WC, Triggle CR. Br J Pharmacol; 1997 Feb 08; 120(4):695-701. PubMed ID: 9051310 [Abstract] [Full Text] [Related]
7. Evidence that mechanisms dependent and independent of nitric oxide mediate endothelium-dependent relaxation to bradykinin in human small resistance-like coronary arteries. Kemp BK, Cocks TM. Br J Pharmacol; 1997 Mar 08; 120(5):757-62. PubMed ID: 9138678 [Abstract] [Full Text] [Related]
8. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D, Simonsen U, Hernández M, García-Sacristán A. Br J Pharmacol; 1998 Apr 08; 123(8):1609-20. PubMed ID: 9605568 [Abstract] [Full Text] [Related]
9. Mesenteric vasodilator responses in cirrhotic rats: a role for nitric oxide? Mathie RT, Ralevic V, Moore KP, Burnstock G. Hepatology; 1996 Jan 08; 23(1):130-6. PubMed ID: 8550032 [Abstract] [Full Text] [Related]
10. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed. Adeagbo AS, Triggle CR. J Cardiovasc Pharmacol; 1993 Mar 08; 21(3):423-9. PubMed ID: 7681503 [Abstract] [Full Text] [Related]
11. alpha2-Adrenoceptor subsensitivity in mesenteric vascular bed of cholestatic rats: the role of nitric oxide and endogenous opioids. Borhani AA, Houshmand G, Samini M, Namiranian K, Hajrasouliha AR, Tavakoli S, Ebrahimi F, Dehpour AR. Eur J Pharmacol; 2005 May 09; 514(2-3):183-9. PubMed ID: 15910805 [Abstract] [Full Text] [Related]
12. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y, Otsuka A, Tanaka H, Shigenobu K. Res Commun Mol Pathol Pharmacol; 1999 Mar 09; 103(3):227-39. PubMed ID: 10509734 [Abstract] [Full Text] [Related]
13. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery. Ozkan MH, Uma S. Life Sci; 2005 Nov 19; 78(1):14-21. PubMed ID: 16125203 [Abstract] [Full Text] [Related]
14. Effect of chronic lithium administration on endothelium-dependent relaxation of rat mesenteric bed: role of nitric oxide. Afsharimani B, Moezi L, Sadeghipour H, Rahimzadeh-Rofouyi B, Nobakht M, Sanatkar M, Ghahremani MH, Dehpour AR. Can J Physiol Pharmacol; 2007 Oct 19; 85(10):1038-46. PubMed ID: 18066105 [Abstract] [Full Text] [Related]
15. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. Shi Y, Ku DD, Man RY, Vanhoutte PM. J Pharmacol Exp Ther; 2006 Jul 19; 318(1):276-81. PubMed ID: 16565165 [Abstract] [Full Text] [Related]
16. P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation. Malmsjö M, Edvinsson L, Erlinge D. Br J Pharmacol; 1998 Feb 19; 123(4):719-29. PubMed ID: 9517392 [Abstract] [Full Text] [Related]
17. EDHF-mediated rapid restoration of hypotensive response to acetylcholine after chronic, but not acute, nitric oxide synthase inhibition in rats. Desai KM, Gopalakrishnan V, Hiebert LM, McNeill JR, Wilson TW. Eur J Pharmacol; 2006 Sep 28; 546(1-3):120-6. PubMed ID: 16876156 [Abstract] [Full Text] [Related]
18. Modulation of vasorelaxant responses to potassium channel openers by basal nitric oxide in the rat isolated superior mesenteric arterial bed. McCulloch AI, Randall MD. Br J Pharmacol; 1996 Mar 28; 117(5):859-66. PubMed ID: 8851502 [Abstract] [Full Text] [Related]
19. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM, Costa CA, Carvalho LC, Brandão RM, Rangel BM, Tano T, Soares de Moura R, Resende AC. Vascul Pharmacol; 2007 May 28; 46(5):353-9. PubMed ID: 17258511 [Abstract] [Full Text] [Related]
20. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels. Zhu P, Bény JL, Flammer J, Lüscher TF, Haefliger IO. Invest Ophthalmol Vis Sci; 1997 Aug 28; 38(9):1761-7. PubMed ID: 9286264 [Abstract] [Full Text] [Related] Page: [Next] [New Search]