These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 9607560

  • 21. Transforming growth factor beta 1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice.
    Zugmaier G, Paik S, Wilding G, Knabbe C, Bano M, Lupu R, Deschauer B, Simpson S, Dickson RB, Lippman M.
    Cancer Res; 1991 Jul 01; 51(13):3590-4. PubMed ID: 2054795
    [Abstract] [Full Text] [Related]

  • 22. Differential responsiveness to autocrine and exogenous transforming growth factor (TGF) beta1 in cells with nonfunctional TGF-beta receptor type III.
    Deng X, Bellis S, Yan Z, Friedman E.
    Cell Growth Differ; 1999 Jan 01; 10(1):11-8. PubMed ID: 9950213
    [Abstract] [Full Text] [Related]

  • 23. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT).
    Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z.
    Respir Res; 2005 Jun 09; 6(1):56. PubMed ID: 15946381
    [Abstract] [Full Text] [Related]

  • 24. Expression of a dominant negative type II TGF-beta receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development.
    Amendt C, Schirmacher P, Weber H, Blessing M.
    Oncogene; 1998 Jul 09; 17(1):25-34. PubMed ID: 9671311
    [Abstract] [Full Text] [Related]

  • 25. Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma.
    Löhr M, Schmidt C, Ringel J, Kluth M, Müller P, Nizze H, Jesnowski R.
    Cancer Res; 2001 Jan 15; 61(2):550-5. PubMed ID: 11212248
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion--an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor.
    Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chouaib S, Kaminska B.
    Oncogene; 2008 Feb 07; 27(7):918-30. PubMed ID: 17684491
    [Abstract] [Full Text] [Related]

  • 29. A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor beta1.
    Picon A, Gold LI, Wang J, Cohen A, Friedman E.
    Cancer Epidemiol Biomarkers Prev; 1998 Jun 07; 7(6):497-504. PubMed ID: 9641494
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells.
    Kim ES, Kim MS, Moon A.
    Int J Oncol; 2004 Nov 07; 25(5):1375-82. PubMed ID: 15492828
    [Abstract] [Full Text] [Related]

  • 32. The effect of transforming growth factor beta on human neuroendocrine tumor BON cell proliferation and differentiation is mediated through somatostatin signaling.
    Leu FP, Nandi M, Niu C.
    Mol Cancer Res; 2008 Jun 07; 6(6):1029-42. PubMed ID: 18567806
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Expression of transforming growth factor-beta receptor type II and tumorigenicity in human breast adenocarcinoma MCF-7 cells.
    Ko Y, Banerji SS, Liu Y, Li W, Liang J, Soule HD, Pauley RJ, Willson JK, Zborowska E, Brattain MG.
    J Cell Physiol; 1998 Aug 07; 176(2):424-34. PubMed ID: 9648930
    [Abstract] [Full Text] [Related]

  • 40. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways.
    Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK, Chi SG.
    Oncogene; 2003 Jul 10; 22(28):4314-32. PubMed ID: 12853969
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.