These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
386 related items for PubMed ID: 9609719
21. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes. Tittor J, Paula S, Subramaniam S, Heberle J, Henderson R, Oesterhelt D. J Mol Biol; 2002 May 31; 319(2):555-65. PubMed ID: 12051928 [Abstract] [Full Text] [Related]
22. Partitioning of free energy gain between the photoisomerized retinal and the protein in bacteriorhodopsin. Dioumaev AK, Brown LS, Needleman R, Lanyi JK. Biochemistry; 1998 Jul 14; 37(28):9889-93. PubMed ID: 9665693 [Abstract] [Full Text] [Related]
23. Functional roles of aspartic acid residues at the cytoplasmic surface of bacteriorhodopsin. Brown LS, Needleman R, Lanyi JK. Biochemistry; 1999 May 25; 38(21):6855-61. PubMed ID: 10346907 [Abstract] [Full Text] [Related]
24. On the two pathways of the M-intermediate formation in the photocycle of bacteriorhodopsin. Drachev LA, Kaulen AD, Komrakov AYu. Biochem Mol Biol Int; 1993 Jul 25; 30(3):461-9. PubMed ID: 8401304 [Abstract] [Full Text] [Related]
25. Interaction of the protonated Schiff base with the peptide backbone of valine 49 and the intervening water molecule in the N photointermediate of bacteriorhodopsin. Yamazaki Y, Kandori H, Needleman R, Lanyi JK, Maeda A. Biochemistry; 1998 Feb 10; 37(6):1559-64. PubMed ID: 9484226 [Abstract] [Full Text] [Related]
26. The last phase of the reprotonation switch in bacteriorhodopsin: the transition between the M-type and the N-type protein conformation depends on hydration. Kamikubo H, Oka T, Imamoto Y, Tokunaga F, Lanyi JK, Kataoka M. Biochemistry; 1997 Oct 07; 36(40):12282-7. PubMed ID: 9315867 [Abstract] [Full Text] [Related]
27. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M, Ihara K, Kandori H. Biochemistry; 2006 Sep 05; 45(35):10633-40. PubMed ID: 16939215 [Abstract] [Full Text] [Related]
28. Arginine activity in the proton-motive photocycle of bacteriorhodopsin: solid-state NMR studies of the wild-type and D85N proteins. Petkova AT, Hu JG, Bizounok M, Simpson M, Griffin RG, Herzfeld J. Biochemistry; 1999 Feb 02; 38(5):1562-72. PubMed ID: 9931023 [Abstract] [Full Text] [Related]
29. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. Luecke H, Schobert B, Cartailler JP, Richter HT, Rosengarth A, Needleman R, Lanyi JK. J Mol Biol; 2000 Jul 28; 300(5):1237-55. PubMed ID: 10903866 [Abstract] [Full Text] [Related]
30. Protein-chromophore interactions in bacteriorhodopsin: the effects of a change in surface potential. Swords NA, Wallace BA. Biochim Biophys Acta; 1991 Dec 09; 1070(2):313-20. PubMed ID: 1764449 [Abstract] [Full Text] [Related]
31. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Shibata M, Kandori H. Biochemistry; 2005 May 24; 44(20):7406-13. PubMed ID: 15895984 [Abstract] [Full Text] [Related]
32. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model. Tanimoto T, Furutani Y, Kandori H. Biochemistry; 2003 Mar 04; 42(8):2300-6. PubMed ID: 12600197 [Abstract] [Full Text] [Related]
33. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin. Farooq A. Biochemistry; 1998 Oct 27; 37(43):15170-6. PubMed ID: 9790681 [Abstract] [Full Text] [Related]
34. Partial dehydration of the retinal binding pocket and proof for photochemical deprotonation of the retinal Schiff base in bicelle bacteriorhodopsin crystals. Sanii LS, El-Sayed MA. Photochem Photobiol; 2005 Oct 27; 81(6):1356-60. PubMed ID: 16097857 [Abstract] [Full Text] [Related]
35. The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH. Balashov SP, Lu M, Imasheva ES, Govindjee R, Ebrey TG, Othersen B, Chen Y, Crouch RK, Menick DR. Biochemistry; 1999 Feb 16; 38(7):2026-39. PubMed ID: 10026285 [Abstract] [Full Text] [Related]
36. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N, Shibata M, Friedman N, Sheves M, Belenky M, Herzfeld J, Kandori H. Biochemistry; 2006 Sep 05; 45(35):10674-81. PubMed ID: 16939219 [Abstract] [Full Text] [Related]
37. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Hu JG, Sun BQ, Bizounok M, Hatcher ME, Lansing JC, Raap J, Verdegem PJ, Lugtenburg J, Griffin RG, Herzfeld J. Biochemistry; 1998 Jun 02; 37(22):8088-96. PubMed ID: 9609703 [Abstract] [Full Text] [Related]
38. Effect of substitution of proline-77 to aspartate on the light-driven proton release of bacteriorhodopsin. Wang Y, Zhao Y, Ming M, Wu J, Huang W, Ding J. Photochem Photobiol; 2012 Jun 02; 88(4):922-7. PubMed ID: 22443335 [Abstract] [Full Text] [Related]
39. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice. Isenbarger TA, Krebs MP. Biochemistry; 1999 Jul 13; 38(28):9023-30. PubMed ID: 10413475 [Abstract] [Full Text] [Related]
40. A large photolysis-induced pKa increase of the chromophore counterion in bacteriorhodopsin: implications for ion transport mechanisms of retinal proteins. Braiman MS, Dioumaev AK, Lewis JR. Biophys J; 1996 Feb 13; 70(2):939-47. PubMed ID: 8789111 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]