These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The circadian clock in the retina controls rod-cone coupling. Ribelayga C, Cao Y, Mangel SC. Neuron; 2008 Sep 11; 59(5):790-801. PubMed ID: 18786362 [Abstract] [Full Text] [Related]
5. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina. Yang XL, Wu SM. J Neurophysiol; 1997 Nov 11; 78(5):2662-73. PubMed ID: 9356416 [Abstract] [Full Text] [Related]
6. Cone ERG Changes During Light Adaptation in Two All-Cone Mutant Mice: Implications for Rod-Cone Pathway Interactions. Bush RA, Tanikawa A, Zeng Y, Sieving PA. Invest Ophthalmol Vis Sci; 2019 Aug 01; 60(10):3680-3688. PubMed ID: 31469895 [Abstract] [Full Text] [Related]
7. A circadian clock regulates rod and cone input to fish retinal cone horizontal cells. Wang Y, Mangel SC. Proc Natl Acad Sci U S A; 1996 May 14; 93(10):4655-60. PubMed ID: 8643459 [Abstract] [Full Text] [Related]
9. Circadian rhythms in the green sunfish retina. Dearry A, Barlow RB. J Gen Physiol; 1987 May 14; 89(5):745-70. PubMed ID: 3598559 [Abstract] [Full Text] [Related]
10. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice. Allen AE, Lucas RJ. Invest Ophthalmol Vis Sci; 2016 Jan 01; 57(1):276-87. PubMed ID: 26818794 [Abstract] [Full Text] [Related]
11. Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells. Ribelayga C, Wang Y, Mangel SC. J Physiol; 2002 Nov 01; 544(3):801-16. PubMed ID: 12411525 [Abstract] [Full Text] [Related]
12. Different effects of low Ca2+ on signal transmission from rods and cones to bipolar cells in carp retina. Xu HP, Yang XL. Brain Res; 2002 Dec 06; 957(1):136-43. PubMed ID: 12443989 [Abstract] [Full Text] [Related]
13. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system. Vinberg F, Kolesnikov AV, Kefalov VJ. Vision Res; 2014 Aug 06; 101():108-17. PubMed ID: 24959652 [Abstract] [Full Text] [Related]
14. Circadian modulation of temporal properties of the rod pathway in larval Xenopus. Solessio E, Scheraga D, Engbretson GA, Knox BE, Barlow RB. J Neurophysiol; 2004 Nov 06; 92(5):2672-84. PubMed ID: 15486422 [Abstract] [Full Text] [Related]
15. The electroretinogram of the rhodopsin knockout mouse. Toda K, Bush RA, Humphries P, Sieving PA. Vis Neurosci; 1999 Nov 06; 16(2):391-8. PubMed ID: 10367972 [Abstract] [Full Text] [Related]
16. A circadian clock regulates the process of ERG b- and d-wave dominance transition in dark-adapted zebrafish. Ren JQ, Li L. Vision Res; 2004 Nov 06; 44(18):2147-52. PubMed ID: 15183681 [Abstract] [Full Text] [Related]
17. Chromatic rod-cone interaction during dark adaptation. Stabell B, Stabell U. J Opt Soc Am A Opt Image Sci Vis; 1998 Nov 06; 15(11):2809-15. PubMed ID: 9803541 [Abstract] [Full Text] [Related]
18. Origin of negative potentials in the light-adapted ERG of cat retina. Frishman LJ, Steinberg RH. J Neurophysiol; 1990 Jun 06; 63(6):1333-46. PubMed ID: 2358881 [Abstract] [Full Text] [Related]