These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
503 related items for PubMed ID: 9618562
1. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M. Proc Natl Acad Sci U S A; 1998 Jun 09; 95(12):7197-202. PubMed ID: 9618562 [Abstract] [Full Text] [Related]
2. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Collett CE, Harberd NP, Leyser O. Plant Physiol; 2000 Oct 09; 124(2):553-62. PubMed ID: 11027706 [Abstract] [Full Text] [Related]
3. IPyA glucosylation mediates light and temperature signaling to regulate auxin-dependent hypocotyl elongation in Arabidopsis. Chen L, Huang XX, Zhao SM, Xiao DW, Xiao LT, Tong JH, Wang WS, Li YJ, Ding Z, Hou BK. Proc Natl Acad Sci U S A; 2020 Mar 24; 117(12):6910-6917. PubMed ID: 32152121 [Abstract] [Full Text] [Related]
4. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Romano CP, Robson PR, Smith H, Estelle M, Klee H. Plant Mol Biol; 1995 Mar 24; 27(6):1071-83. PubMed ID: 7766890 [Abstract] [Full Text] [Related]
5. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling. Muday GK, Brady SR, Argueso C, Deruère J, Kieber JJ, DeLong A. Plant Physiol; 2006 Aug 24; 141(4):1617-29. PubMed ID: 16798939 [Abstract] [Full Text] [Related]
8. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Saibo NJ, Vriezen WH, Beemster GT, Van Der Straeten D. Plant J; 2003 Mar 24; 33(6):989-1000. PubMed ID: 12631324 [Abstract] [Full Text] [Related]
9. Local auxin metabolism regulates environment-induced hypocotyl elongation. Zheng Z, Guo Y, Novák O, Chen W, Ljung K, Noel JP, Chory J. Nat Plants; 2016 Mar 21; 2():16025. PubMed ID: 27249562 [Abstract] [Full Text] [Related]
10. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity. Bours R, Kohlen W, Bouwmeester HJ, van der Krol A. Plant Physiol; 2015 Feb 21; 167(2):517-30. PubMed ID: 25516603 [Abstract] [Full Text] [Related]
17. Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. Dong Y, Li M, Zhang P, Wang X, Fan C, Zhou Y. BMC Plant Biol; 2014 Nov 27; 14():332. PubMed ID: 25428555 [Abstract] [Full Text] [Related]
19. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Rashotte AM, Poupart J, Waddell CS, Muday GK. Plant Physiol; 2003 Oct 27; 133(2):761-72. PubMed ID: 14526119 [Abstract] [Full Text] [Related]
20. Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D. Plant Cell Physiol; 2005 Jun 27; 46(6):827-36. PubMed ID: 15851402 [Abstract] [Full Text] [Related] Page: [Next] [New Search]