These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 9622495

  • 1. Protonic equilibria in the reductive half-reaction of the medium-chain acyl-CoA dehydrogenase.
    Rudik I, Ghisla S, Thorpe C.
    Biochemistry; 1998 Jun 09; 37(23):8437-45. PubMed ID: 9622495
    [Abstract] [Full Text] [Related]

  • 2. Thioester enolate stabilization in the acyl-CoA dehydrogenases: the effect of 5-deaza-flavin substitution.
    Rudik I, Thorpe C.
    Arch Biochem Biophys; 2001 Aug 15; 392(2):341-8. PubMed ID: 11488611
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes.
    Peterson KL, Peterson KM, Srivastava DK.
    Biochemistry; 1998 Sep 08; 37(36):12659-71. PubMed ID: 9730839
    [Abstract] [Full Text] [Related]

  • 8. Crystal structures of the wild type and the Glu376Gly/Thr255Glu mutant of human medium-chain acyl-CoA dehydrogenase: influence of the location of the catalytic base on substrate specificity.
    Lee HJ, Wang M, Paschke R, Nandy A, Ghisla S, Kim JJ.
    Biochemistry; 1996 Sep 24; 35(38):12412-20. PubMed ID: 8823176
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Oxidase activity of the acyl-CoA dehydrogenases.
    DuPlessis ER, Pellett J, Stankovich MT, Thorpe C.
    Biochemistry; 1998 Jul 21; 37(29):10469-77. PubMed ID: 9671517
    [Abstract] [Full Text] [Related]

  • 11. Redox properties of human medium-chain acyl-CoA dehydrogenase, modulation by charged active-site amino acid residues.
    Mancini-Samuelson GJ, Kieweg V, Sabaj KM, Ghisla S, Stankovich MT.
    Biochemistry; 1998 Oct 13; 37(41):14605-12. PubMed ID: 9772189
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Role of glutamate 144 and glutamate 164 in the catalytic mechanism of enoyl-CoA hydratase.
    Hofstein HA, Feng Y, Anderson VE, Tonge PJ.
    Biochemistry; 1999 Jul 20; 38(29):9508-16. PubMed ID: 10413528
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Oxidation-reduction properties of short-chain acyl-CoA dehydrogenase: effects of substrate analogs.
    Pace CP, Stankovich MT.
    Arch Biochem Biophys; 1994 Sep 20; 313(2):261-6. PubMed ID: 8080271
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.