These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


701 related items for PubMed ID: 9626758

  • 1. Mechanisms of hepatic transport of cyclosporin A: an explanation for its cholestatic action?
    Fricker G, Fahr A.
    Yale J Biol Med; 1997; 70(4):379-90. PubMed ID: 9626758
    [Abstract] [Full Text] [Related]

  • 2. Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver.
    Bossard R, Stieger B, O'Neill B, Fricker G, Meier PJ.
    J Clin Invest; 1993 Jun; 91(6):2714-20. PubMed ID: 8514879
    [Abstract] [Full Text] [Related]

  • 3. Hepatocellular effects of cyclosporine A and its derivative SDZ IMM 125 in vitro.
    Wolf A, Schramm U, Fahr A, Aicher L, Cordier A, Trommer WE, Fricker G.
    J Pharmacol Exp Ther; 1998 Mar; 284(3):817-25. PubMed ID: 9495838
    [Abstract] [Full Text] [Related]

  • 4. S-Adenosylmethionine protects against cyclosporin A-induced alterations in rat liver plasma membrane fluidity and functions.
    Galán AI, Muñoz ME, Jiménez R.
    J Pharmacol Exp Ther; 1999 Aug; 290(2):774-81. PubMed ID: 10411591
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of bile acid transport by cyclosporine A in rat liver plasma membrane vesicles.
    Moseley RH, Johnson TR, Morrissette JM.
    J Pharmacol Exp Ther; 1990 Jun; 253(3):974-80. PubMed ID: 2359033
    [Abstract] [Full Text] [Related]

  • 6. S-adenosyl-L-methionine prevents disruption of canalicular function and pericanalicular cytoskeleton integrity caused by cyclosporin A in isolated rat hepatocyte couplets.
    Román ID, Johnson GD, Coleman R.
    Hepatology; 1996 Jul; 24(1):134-40. PubMed ID: 8707252
    [Abstract] [Full Text] [Related]

  • 7. Transport characteristics of three fluorescent conjugated bile acid analogs in isolated rat hepatocytes and couplets.
    Maglova LM, Jackson AM, Meng XJ, Carruth MW, Schteingart CD, Ton-Nu HT, Hofmann AF, Weinman SA.
    Hepatology; 1995 Aug; 22(2):637-47. PubMed ID: 7635434
    [Abstract] [Full Text] [Related]

  • 8. ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt.
    Müller M, Ishikawa T, Berger U, Klünemann C, Lucka L, Schreyer A, Kannicht C, Reutter W, Kurz G, Keppler D.
    J Biol Chem; 1991 Oct 05; 266(28):18920-6. PubMed ID: 1918007
    [Abstract] [Full Text] [Related]

  • 9. Adaptive response of the enterohepatic circulation of bile acids to extrahepatic cholestasis.
    Dumaswala R, Berkowitz D, Heubi JE.
    Hepatology; 1996 Mar 05; 23(3):623-9. PubMed ID: 8617445
    [Abstract] [Full Text] [Related]

  • 10. Mechanisms for the hepatic uptake and biliary excretion of tributylmethylammonium: studies with rat liver plasma membrane vesicles.
    Moseley RH, Smit H, Van Solkema BG, Wang W, Meijer DK.
    J Pharmacol Exp Ther; 1996 Feb 05; 276(2):561-7. PubMed ID: 8632322
    [Abstract] [Full Text] [Related]

  • 11. Enhanced Na+-dependent bile salt uptake by WIF-B cells, a rat hepatoma hybrid cell line, following growth in the presence of a physiological bile salt.
    Konieczko EM, Ralston AK, Crawford AR, Karpen SJ, Crawford JM.
    Hepatology; 1998 Jan 05; 27(1):191-9. PubMed ID: 9425937
    [Abstract] [Full Text] [Related]

  • 12. Regulation of hepatic transport of bile salt. Effect of protein synthesis inhibition on excretion of bile salts and their binding to liver surface membrane fractions.
    Gonzalez MC, Sutherland E, Simon FR.
    J Clin Invest; 1979 Apr 05; 63(4):684-94. PubMed ID: 438330
    [Abstract] [Full Text] [Related]

  • 13. Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver.
    Böhme M, Müller M, Leier I, Jedlitschky G, Keppler D.
    Gastroenterology; 1994 Jul 05; 107(1):255-65. PubMed ID: 8020669
    [Abstract] [Full Text] [Related]

  • 14. Identification and characterization of a bile acid receptor in isolated liver surface membranes.
    Accatino L, Simon FR.
    J Clin Invest; 1976 Feb 05; 57(2):496-508. PubMed ID: 3520
    [Abstract] [Full Text] [Related]

  • 15. Structure-specific inhibition by bile acids of adenosine triphosphate-dependent taurocholate transport in rat canalicular membrane vesicles.
    Nishida T, Che M, Gatmaitan Z, Arias IM.
    Hepatology; 1995 Apr 05; 21(4):1058-62. PubMed ID: 7705779
    [Abstract] [Full Text] [Related]

  • 16. Characterization of the hepatic canalicular membrane transport of a model oligopeptide: ditekiren.
    Takahashi H, Kim RB, Perry PR, Wilkinson GR.
    J Pharmacol Exp Ther; 1997 Apr 05; 281(1):297-303. PubMed ID: 9103510
    [Abstract] [Full Text] [Related]

  • 17. Adenosine triphosphate-dependent taurocholate transport in human liver plasma membranes.
    Wolters H, Kuipers F, Slooff MJ, Vonk RJ.
    J Clin Invest; 1992 Dec 05; 90(6):2321-6. PubMed ID: 1469089
    [Abstract] [Full Text] [Related]

  • 18. Effect of Na on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system.
    Anwer MS, Hegner D.
    Hoppe Seylers Z Physiol Chem; 1978 Feb 05; 359(2):181-92. PubMed ID: 649053
    [Abstract] [Full Text] [Related]

  • 19. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles.
    Zimmerli B, Valantinas J, Meier PJ.
    J Pharmacol Exp Ther; 1989 Jul 05; 250(1):301-8. PubMed ID: 2746502
    [Abstract] [Full Text] [Related]

  • 20. Structural and functional alterations of hepatocytes during transient phalloidin-induced cholestasis in the rat.
    Loranger A, Barriault C, Yousef IM, Tuchweber B.
    Toxicol Appl Pharmacol; 1996 Mar 05; 137(1):100-11. PubMed ID: 8607135
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.