These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


530 related items for PubMed ID: 9626906

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Contrasting effects of blockade of nitric oxide formation on resistance and conductance coronary vessels in conscious dogs.
    Parent R, Hamdad N, Ming Z, Lavallée M.
    Cardiovasc Res; 1996 Apr; 31(4):555-67. PubMed ID: 8689647
    [Abstract] [Full Text] [Related]

  • 4. Influence of nitric oxide on vascular, metabolic, and contractile responses to dobutamine in in situ canine hearts.
    Crystal GJ, Zhou X, Gurevicius J, Ramez Salem M.
    Anesth Analg; 1998 Nov; 87(5):994-1001. PubMed ID: 9806671
    [Abstract] [Full Text] [Related]

  • 5. Role of nitric oxide in vascular tone and in reactivity to isoproterenol and adenosine in the goat coronary circulation.
    Fernández N, Sánchez MA, Martínez MA, García-Villalón AL, Monge L, Gómez B, Diéguez G.
    Eur J Pharmacol; 2000 Jan 03; 387(1):93-9. PubMed ID: 10633166
    [Abstract] [Full Text] [Related]

  • 6. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J, Salem MR, Metwally AA, Silver JM, Crystal GJ.
    Am J Physiol; 1995 Jan 03; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [Abstract] [Full Text] [Related]

  • 7. Effect of cumulative doses of NG-nitro-L-arginine methyl ester on coronary blood flow of anesthetized and conscious dogs.
    Matsunaga T, Okumura K, Ishizaka H, Tsunoda R, Yasue H.
    Arch Int Pharmacodyn Ther; 1994 Jan 03; 327(3):251-65. PubMed ID: 7848010
    [Abstract] [Full Text] [Related]

  • 8. Nitric oxide mediates flow-dependent epicardial coronary vasodilation to changes in pulse frequency but not mean flow in conscious dogs.
    Canty JM, Schwartz JS.
    Circulation; 1994 Jan 03; 89(1):375-84. PubMed ID: 8281673
    [Abstract] [Full Text] [Related]

  • 9. Endothelin-dependent effects limit flow-induced dilation of conductance coronary vessels after blockade of nitric oxide formation in conscious dogs.
    Parent R, Lavallée M.
    Cardiovasc Res; 2000 Jan 14; 45(2):470-7. PubMed ID: 10728368
    [Abstract] [Full Text] [Related]

  • 10. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia.
    Buus NH, Bøttcher M, Hermansen F, Sander M, Nielsen TT, Mulvany MJ.
    Circulation; 2001 Nov 06; 104(19):2305-10. PubMed ID: 11696470
    [Abstract] [Full Text] [Related]

  • 11. Hemodilution does not alter the coronary vasodilating effects of endogenous or exogenous nitric oxide.
    Crystal GJ, El-Orbany M, Zhou X, Salem MR, Kim SJ.
    Can J Anaesth; 2008 Aug 06; 55(8):507-14. PubMed ID: 18676385
    [Abstract] [Full Text] [Related]

  • 12. Role of nitric oxide in regulation of coronary blood flow in response to increased metabolic demand in dogs with pacing-induced heart failure.
    Tada H, Egashira K, Yamamoto M, Usui M, Arai Y, Katsuda Y, Shimokawa H, Takeshita A.
    Jpn Circ J; 2001 Sep 06; 65(9):827-33. PubMed ID: 11548884
    [Abstract] [Full Text] [Related]

  • 13. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand.
    Jones CJ, Kuo L, Davis MJ, DeFily DV, Chilian WM.
    Circulation; 1995 Mar 15; 91(6):1807-13. PubMed ID: 7882491
    [Abstract] [Full Text] [Related]

  • 14. Nitric oxide does not modulate myocardial contractility acutely in in situ canine hearts.
    Crystal GJ, Gurevicius J.
    Am J Physiol; 1996 May 15; 270(5 Pt 2):H1568-76. PubMed ID: 8928861
    [Abstract] [Full Text] [Related]

  • 15. Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation.
    Dick GM, Bratz IN, Borbouse L, Payne GA, Dincer UD, Knudson JD, Rogers PA, Tune JD.
    Am J Physiol Heart Circ Physiol; 2008 May 15; 294(5):H2371-81. PubMed ID: 18375717
    [Abstract] [Full Text] [Related]

  • 16. Endothelium-derived nitric oxide does not modulate metabolic coronary vasodilation induced by tachycardia in dogs.
    Katsuda Y, Egashira K, Akatsuka Y, Narishige T, Shimokawa H, Takeshita A.
    J Cardiovasc Pharmacol; 1995 Sep 15; 26(3):437-44. PubMed ID: 8583786
    [Abstract] [Full Text] [Related]

  • 17. Coronary vasoconstriction produced by vasopressin in anesthetized goats. Role of vasopressin V1 and V2 receptors and nitric oxide.
    Fernández N, García JL, García-Villalón AL, Monge L, Gómez B, Diéguez G.
    Eur J Pharmacol; 1998 Jan 26; 342(2-3):225-33. PubMed ID: 9548390
    [Abstract] [Full Text] [Related]

  • 18. Blockade of nitric oxide synthesis reduces myocardial oxygen consumption in vivo.
    Sherman AJ, Davis CA, Klocke FJ, Harris KR, Srinivasan G, Yaacoub AS, Quinn DA, Ahlin KA, Jang JJ.
    Circulation; 1997 Mar 04; 95(5):1328-34. PubMed ID: 9054867
    [Abstract] [Full Text] [Related]

  • 19. Coronary vascular responsiveness to adenosine is impaired additively by blockade of nitric oxide synthesis and a sulfonylurea.
    Davis CA, Sherman AJ, Yaroshenko Y, Harris KR, Hedjbeli S, Parker MA, Klocke FJ.
    J Am Coll Cardiol; 1998 Mar 15; 31(4):816-22. PubMed ID: 9525553
    [Abstract] [Full Text] [Related]

  • 20. Nitric oxide-independent dilation of conductance coronary arteries to acetylcholine in conscious dogs.
    Ming Z, Parent R, Lavallée M.
    Circ Res; 1997 Dec 15; 81(6):977-87. PubMed ID: 9400378
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.