These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 9629653
21. A discrete-time communicable disease model with a stochastic contact rate for nonhomogeneous populations. Enderle JD. Biomed Sci Instrum; 1991; 27():77-88. PubMed ID: 2065180 [Abstract] [Full Text] [Related]
22. Using time-use data to parameterize models for the spread of close-contact infectious diseases. Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, Edmunds WJ. Am J Epidemiol; 2008 Nov 01; 168(9):1082-90. PubMed ID: 18801889 [Abstract] [Full Text] [Related]
23. Contact rate calculation for a basic epidemic model. Rhodes CJ, Anderson RM. Math Biosci; 2008 Nov 01; 216(1):56-62. PubMed ID: 18783724 [Abstract] [Full Text] [Related]
24. Introduction and snapshot review: relating infectious disease transmission models to data. O'Neill PD. Stat Med; 2010 Sep 10; 29(20):2069-77. PubMed ID: 20809536 [Abstract] [Full Text] [Related]
25. Scaling properties of childhood infectious diseases epidemics before and after mass vaccination in Canada. Trottier H, Philippe P. J Theor Biol; 2005 Aug 07; 235(3):326-37. PubMed ID: 15882695 [Abstract] [Full Text] [Related]
26. A symbolic investigation of superspreaders. McCaig C, Begon M, Norman R, Shankland C. Bull Math Biol; 2011 Apr 07; 73(4):777-94. PubMed ID: 21181505 [Abstract] [Full Text] [Related]
27. A discrete-time model for the statistical analysis of infectious disease incidence data. Rampey AH, Longini IM, Haber M, Monto AS. Biometrics; 1992 Mar 07; 48(1):117-28. PubMed ID: 1316178 [Abstract] [Full Text] [Related]
28. Stochastic two-group models with transmission dependent on host infectivity or susceptibility. Nandi A, Allen LJS. J Biol Dyn; 2019 Mar 07; 13(sup1):201-224. PubMed ID: 30381000 [Abstract] [Full Text] [Related]
29. Illustration of some limits of the Markov assumption for transition between groups in models of spread of an infectious pathogen in a structured herd. Viet AF, Jacob C. Theor Popul Biol; 2008 Aug 07; 74(1):93-103. PubMed ID: 18556035 [Abstract] [Full Text] [Related]
30. Multivariate modelling of infectious disease surveillance data. Paul M, Held L, Toschke AM. Stat Med; 2008 Dec 20; 27(29):6250-67. PubMed ID: 18800337 [Abstract] [Full Text] [Related]
31. Monitoring and prediction of an epidemic outbreak using syndromic observations. Skvortsov A, Ristic B. Math Biosci; 2012 Nov 20; 240(1):12-9. PubMed ID: 22705339 [Abstract] [Full Text] [Related]
32. Modeling the spread of infectious disease using genetic information within a marked branching process. Leman SC, Levy F, Walker ES. Stat Med; 2009 Dec 20; 28(29):3626-42. PubMed ID: 19739239 [Abstract] [Full Text] [Related]
33. Epidemic curve characteristics for the Reed-Frost model. Enderle JD. Biomed Sci Instrum; 1991 Dec 20; 27():67-75. PubMed ID: 2065179 [Abstract] [Full Text] [Related]
34. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality. Kirupaharan N, Allen LJ. Bull Math Biol; 2004 Jul 20; 66(4):841-64. PubMed ID: 15210322 [Abstract] [Full Text] [Related]
35. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Cauchemez S, Carrat F, Viboud C, Valleron AJ, Boëlle PY. Stat Med; 2004 Nov 30; 23(22):3469-87. PubMed ID: 15505892 [Abstract] [Full Text] [Related]
36. [Seasonal patterns of infectious disease: similarity and differences]. Canals M. Rev Med Chil; 1997 Apr 30; 125(4):403-8. PubMed ID: 9460280 [Abstract] [Full Text] [Related]
37. Spatial heterogeneity and the persistence of infectious diseases. Hagenaars TJ, Donnelly CA, Ferguson NM. J Theor Biol; 2004 Aug 07; 229(3):349-59. PubMed ID: 15234202 [Abstract] [Full Text] [Related]
38. [Study on the application of Rogerson Spatial Pattern Surveillance Method in real-time surveillance for infectious diseases]. Liu QL, Li XS, Feng ZJ, Ma JQ. Zhonghua Liu Xing Bing Xue Za Zhi; 2007 Nov 07; 28(11):1133-7. PubMed ID: 18396674 [Abstract] [Full Text] [Related]
39. Global properties of infectious disease models with nonlinear incidence. Korobeinikov A. Bull Math Biol; 2007 Aug 07; 69(6):1871-86. PubMed ID: 17443392 [Abstract] [Full Text] [Related]
40. A useful relationship between epidemiology and queueing theory: the distribution of the number of infectives at the moment of the first detection. Trapman P, Bootsma MC. Math Biosci; 2009 May 07; 219(1):15-22. PubMed ID: 19233215 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]