These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 9633649

  • 1. Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431.
    Abbad-Andaloussi S, Amine J, Gerard P, Petitdemange H.
    J Appl Microbiol; 1998 Apr; 84(4):515-22. PubMed ID: 9633649
    [Abstract] [Full Text] [Related]

  • 2. Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture.
    Malaoui H, Marczak R.
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):226-33. PubMed ID: 11330719
    [Abstract] [Full Text] [Related]

  • 3. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool.
    Girbal L, Soucaille P.
    J Bacteriol; 1994 Nov; 176(21):6433-8. PubMed ID: 7961393
    [Abstract] [Full Text] [Related]

  • 4. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures.
    Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P.
    J Bacteriol; 2001 Mar; 183(5):1748-54. PubMed ID: 11160107
    [Abstract] [Full Text] [Related]

  • 5. Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum.
    Colin T, Bories A, Lavigne C, Moulin G.
    Curr Microbiol; 2001 Oct; 43(4):238-43. PubMed ID: 11683356
    [Abstract] [Full Text] [Related]

  • 6. Klebsiella pneumoniae 1,3-propanediol:NAD+ oxidoreductase.
    Johnson EA, Lin EC.
    J Bacteriol; 1987 May; 169(5):2050-4. PubMed ID: 3553154
    [Abstract] [Full Text] [Related]

  • 7. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol.
    Vasconcelos I, Girbal L, Soucaille P.
    J Bacteriol; 1994 Mar; 176(5):1443-50. PubMed ID: 8113186
    [Abstract] [Full Text] [Related]

  • 8. Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D.
    Malaoui H, Marczak R.
    J Appl Microbiol; 2001 Jun; 90(6):1006-14. PubMed ID: 11412332
    [Abstract] [Full Text] [Related]

  • 9. Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5).
    González-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I.
    Appl Environ Microbiol; 2006 Jan; 72(1):96-101. PubMed ID: 16391030
    [Abstract] [Full Text] [Related]

  • 10. Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and on glucose.
    Abbad-Andaloussi S, Durr C, Raval G, Petitdemange H.
    Microbiology (Reading); 1996 May; 142(5):1149-1158. PubMed ID: 33725787
    [Abstract] [Full Text] [Related]

  • 11. Glycerol conversion to 1,3-propanediol by Clostridium pasteurianum: cloning and expression of the gene encoding 1,3-propanediol dehydrogenase.
    Luers F, Seyfried M, Daniel R, Gottschalk G.
    FEMS Microbiol Lett; 1997 Sep 15; 154(2):337-45. PubMed ID: 9311132
    [Abstract] [Full Text] [Related]

  • 12. Xylan supplement improves 1,3-propanediol fermentation by Clostridium butyricum.
    Apiwatanapiwat W, Vaithanomsat P, Thanapase W, Ratanakhanokchai K, Kosugi A.
    J Biosci Bioeng; 2018 Jun 15; 125(6):662-668. PubMed ID: 29534944
    [Abstract] [Full Text] [Related]

  • 13. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate.
    Veiga da Cunha M, Foster MA.
    J Bacteriol; 1992 Feb 15; 174(3):1013-9. PubMed ID: 1732191
    [Abstract] [Full Text] [Related]

  • 14. Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation.
    Colin T, Bories A, Moulin G.
    Appl Microbiol Biotechnol; 2000 Aug 15; 54(2):201-5. PubMed ID: 10968633
    [Abstract] [Full Text] [Related]

  • 15. High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain.
    Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M.
    J Biotechnol; 2000 Feb 17; 77(2-3):191-208. PubMed ID: 10682279
    [Abstract] [Full Text] [Related]

  • 16. Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol.
    Solomon BO, Zeng AP, Biebl H, Schlieker H, Posten C, Deckwer WD.
    J Biotechnol; 1995 Apr 15; 39(2):107-17. PubMed ID: 7755965
    [Abstract] [Full Text] [Related]

  • 17. 1,3-Propanediol:NAD+ oxidoreductases of Lactobacillus brevis and Lactobacillus buchneri.
    Veiga-da-Cunha M, Foster MA.
    Appl Environ Microbiol; 1992 Jun 15; 58(6):2005-10. PubMed ID: 1622279
    [Abstract] [Full Text] [Related]

  • 18. Production of 1,3-propanediol using a novel 1,3-propanediol dehydrogenase from isolated Clostridium butyricum and co-biotransformation of whole cells.
    Yun J, Yang M, Magocha TA, Zhang H, Xue Y, Zhang G, Qi X, Sun W.
    Bioresour Technol; 2018 Jan 15; 247():838-843. PubMed ID: 30060420
    [Abstract] [Full Text] [Related]

  • 19. 1,3-propanediol production with Citrobacter werkmanii DSM17579: effect of a dhaD knock-out.
    Maervoet VE, De Maeseneire SL, Avci FG, Beauprez J, Soetaert WK, De Mey M.
    Microb Cell Fact; 2014 May 17; 13():70. PubMed ID: 24885849
    [Abstract] [Full Text] [Related]

  • 20. Relationships between cellobiose catabolism, enzyme levels, and metabolic intermediates in Clostridium cellulolyticum grown in a synthetic medium.
    Guedon E, Payot S, Desvaux M, Petitdemange H.
    Biotechnol Bioeng; 2000 Feb 05; 67(3):327-35. PubMed ID: 10620263
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.