These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 9635745
1. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes. Tripathi S, Hladky SB. Biophys J; 1998 Jun; 74(6):2912-7. PubMed ID: 9635745 [Abstract] [Full Text] [Related]
2. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Levitt DG, Elias SR, Hautman JM. Biochim Biophys Acta; 1978 Sep 22; 512(2):436-51. PubMed ID: 81687 [Abstract] [Full Text] [Related]
4. Solvent drag across gramicidin channels demonstrated by microelectrodes. Pohl P, Saparov SM. Biophys J; 2000 May 22; 78(5):2426-34. PubMed ID: 10777738 [Abstract] [Full Text] [Related]
5. Ion fluxes in giant excised cardiac membrane patches detected and quantified with ion-selective microelectrodes. Kang TM, Markin VS, Hilgemann DW. J Gen Physiol; 2003 Apr 22; 121(4):325-47. PubMed ID: 12668735 [Abstract] [Full Text] [Related]
6. Weak nonlinearity of current-voltage characteristics of gramicidin D channels. Experiment, theory and application to the study of transmembrane transmission of information. Passechnik VI, Hianik T. Gen Physiol Biophys; 1998 Mar 22; 17(1):51-69. PubMed ID: 9675556 [Abstract] [Full Text] [Related]
9. Impedance analysis of phosphatidylcholine membranes modified with gramicidin D. Naumowicz M, Figaszewski Z. Bioelectrochemistry; 2003 Oct 22; 61(1-2):21-7. PubMed ID: 14642906 [Abstract] [Full Text] [Related]
11. Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum. Miller C. Biophys J; 1982 Jun 22; 38(3):227-30. PubMed ID: 6285998 [Abstract] [Full Text] [Related]
12. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics. Duax WL, Griffin JF, Langs DA, Smith GD, Grochulski P, Pletnev V, Ivanov V. Biopolymers; 1996 Jun 22; 40(1):141-55. PubMed ID: 8541445 [Abstract] [Full Text] [Related]
13. Desformylgramicidin: a model channel with an extremely high water permeability. Saparov SM, Antonenko YN, Koeppe RE, Pohl P. Biophys J; 2000 Nov 22; 79(5):2526-34. PubMed ID: 11053127 [Abstract] [Full Text] [Related]
14. Nanoscale ion sequestration to determine the polarity selectivity of ion conductance in carriers and channels. Cranfield CG, Bettler T, Cornell B. Langmuir; 2015 Nov 22; 31(1):292-8. PubMed ID: 25474616 [Abstract] [Full Text] [Related]
15. Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime. Ring A, Sandblom J. Biophys J; 1988 Apr 22; 53(4):541-8. PubMed ID: 2454676 [Abstract] [Full Text] [Related]
17. Why is gramicidin valence selective? A theoretical study. Sung SS, Jordan PC. Biophys J; 1987 Apr 22; 51(4):661-72. PubMed ID: 2437974 [Abstract] [Full Text] [Related]
18. The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. Finkelstein A, Andersen OS. J Membr Biol; 1981 Apr 30; 59(3):155-71. PubMed ID: 6165825 [Abstract] [Full Text] [Related]
19. The mode of action of some antibiotics on red blood cell membranes. Blaskó K, Shagina LV, Györgyi S, Lev AA. Gen Physiol Biophys; 1986 Dec 30; 5(6):625-36. PubMed ID: 2435616 [Abstract] [Full Text] [Related]
20. Gramicidin D conformation, dynamics and membrane ion transport. Burkhart BM, Gassman RM, Langs DA, Pangborn WA, Duax WL, Pletnev V. Biopolymers; 1999 Dec 30; 51(2):129-44. PubMed ID: 10397797 [Abstract] [Full Text] [Related] Page: [Next] [New Search]