These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 9635749
21. K+ channel inactivation mediated by the concerted action of the cytoplasmic N- and C-terminal domains. Jerng HH, Covarrubias M. Biophys J; 1997 Jan; 72(1):163-74. PubMed ID: 8994601 [Abstract] [Full Text] [Related]
22. Evidence for a multi-ion pore behavior in the plant potassium channel KAT1. Lacombe B, Thibaud JB. J Membr Biol; 1998 Nov 15; 166(2):91-100. PubMed ID: 9841734 [Abstract] [Full Text] [Related]
23. Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. Véry AA, Gaymard F, Bosseux C, Sentenac H, Thibaud JB. Plant J; 1995 Feb 15; 7(2):321-32. PubMed ID: 7704050 [Abstract] [Full Text] [Related]
24. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels. Gonzalez C, Morera FJ, Rosenmann E, Alvarez O, Latorre R. Proc Natl Acad Sci U S A; 2005 Apr 05; 102(14):5020-5. PubMed ID: 15774578 [Abstract] [Full Text] [Related]
25. S4 movement in a mammalian HCN channel. Vemana S, Pandey S, Larsson HP. J Gen Physiol; 2004 Jan 05; 123(1):21-32. PubMed ID: 14676284 [Abstract] [Full Text] [Related]
26. Requirement of negative residues, Asp 95 and Asp 105, in S2 on membrane integration of a voltage-dependent K+ channel, KAT1. Sato Y, Hosoo Y, Sakaguchi M, Uozumi N. Biosci Biotechnol Biochem; 2003 Apr 05; 67(4):923-6. PubMed ID: 12784643 [Abstract] [Full Text] [Related]
27. Mutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K+ channel selectively modulates channel gating. Planells-Cases R, Ferrer-Montiel AV, Patten CD, Montal M. Proc Natl Acad Sci U S A; 1995 Sep 26; 92(20):9422-6. PubMed ID: 7568145 [Abstract] [Full Text] [Related]
28. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Starace DM, Stefani E, Bezanilla F. Neuron; 1997 Dec 26; 19(6):1319-27. PubMed ID: 9427254 [Abstract] [Full Text] [Related]
29. Voltage-controlled gating in a large conductance Ca2+-sensitive K+channel (hslo). Stefani E, Ottolia M, Noceti F, Olcese R, Wallner M, Latorre R, Toro L. Proc Natl Acad Sci U S A; 1997 May 13; 94(10):5427-31. PubMed ID: 9144254 [Abstract] [Full Text] [Related]
30. Determination of transmembrane topology of an inward-rectifying potassium channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Uozumi N, Nakamura T, Schroeder JI, Muto S. Proc Natl Acad Sci U S A; 1998 Aug 18; 95(17):9773-8. PubMed ID: 9707551 [Abstract] [Full Text] [Related]
31. Functional role of a conserved aspartate in the external mouth of voltage-gated potassium channels. Kirsch GE, Pascual JM, Shieh CC. Biophys J; 1995 May 18; 68(5):1804-13. PubMed ID: 7612822 [Abstract] [Full Text] [Related]
32. Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel. Starace DM, Bezanilla F. J Gen Physiol; 2001 May 18; 117(5):469-90. PubMed ID: 11331357 [Abstract] [Full Text] [Related]
33. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes. Shieh RC. J Physiol; 2000 Jul 15; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715 [Abstract] [Full Text] [Related]
34. Inward rectifier potassium channels in plants differ from their animal counterparts in response to voltage and channel modulators. Hedrich R, Moran O, Conti F, Busch H, Becker D, Gambale F, Dreyer I, Küch A, Neuwinger K, Palme K. Eur Biophys J; 1995 Jul 15; 24(2):107-15. PubMed ID: 8582318 [Abstract] [Full Text] [Related]
35. Complex interactions among residues within pore region determine the K+ dependence of a KAT1-type potassium channel AmKAT1. Yang G, Sentenac H, Véry AA, Su Y. Plant J; 2015 Aug 15; 83(3):401-12. PubMed ID: 26032087 [Abstract] [Full Text] [Related]
36. Assembly of plant Shaker-like K(out) channels requires two distinct sites of the channel alpha-subunit. Dreyer I, Porée F, Schneider A, Mittelstädt J, Bertl A, Sentenac H, Thibaud JB, Mueller-Roeber B. Biophys J; 2004 Aug 15; 87(2):858-72. PubMed ID: 15298894 [Abstract] [Full Text] [Related]
37. Amino terminus and the first four membrane-spanning segments of the Arabidopsis K+ channel KAT1 confer inward-rectification property of plant-animal chimeric channels. Cao Y, Crawford NM, Schroeder JI. J Biol Chem; 1995 Jul 28; 270(30):17697-701. PubMed ID: 7629068 [Abstract] [Full Text] [Related]
38. Effect of lanthanum on voltage-dependent gating of a cloned mammalian neuronal potassium channel. Tytgat J, Daenens P. Brain Res; 1997 Feb 28; 749(2):232-7. PubMed ID: 9138723 [Abstract] [Full Text] [Related]
39. Suppression of inward-rectifying K+ channels KAT1 and AKT2 by dominant negative point mutations in the KAT1 alpha-subunit. Baizabal-Aguirre VM, Clemens S, Uozumi N, Schroeder JI. J Membr Biol; 1999 Jan 15; 167(2):119-25. PubMed ID: 9916143 [Abstract] [Full Text] [Related]
40. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels. Alagem N, Yesylevskyy S, Reuveny E. Biophys J; 2003 Jul 15; 85(1):300-12. PubMed ID: 12829485 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]