These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


235 related items for PubMed ID: 9636699

  • 1. Trifluoroethanol stabilizes the pH 4 folding intermediate of sperm whale apomyoglobin.
    Luo Y, Baldwin RL.
    J Mol Biol; 1998 May 29; 279(1):49-57. PubMed ID: 9636699
    [Abstract] [Full Text] [Related]

  • 2. Trifluoroethanol-induced stabilization of the alpha-helical structure of beta-lactoglobulin: implication for non-hierarchical protein folding.
    Shiraki K, Nishikawa K, Goto Y.
    J Mol Biol; 1995 Jan 13; 245(2):180-94. PubMed ID: 7799434
    [Abstract] [Full Text] [Related]

  • 3. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.
    Yang AS, Honig B.
    J Mol Biol; 1994 Apr 15; 237(5):602-14. PubMed ID: 8158640
    [Abstract] [Full Text] [Related]

  • 4. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin.
    Nishimura C, Dyson HJ, Wright PE.
    J Mol Biol; 2006 Jan 06; 355(1):139-56. PubMed ID: 16300787
    [Abstract] [Full Text] [Related]

  • 5. Putative interhelix ion pairs involved in the stability of myoglobin.
    Ramos CH, Kay MS, Baldwin RL.
    Biochemistry; 1999 Jul 27; 38(30):9783-90. PubMed ID: 10423259
    [Abstract] [Full Text] [Related]

  • 6. [On the role of some conserved and nonconserved amino acid residues in transition state and in intermediate of apomyoglobin folding].
    Baryshnikova EN, Mel'nik BS, Katina NS, Finkel'shteĭn AV, Bychkova VE.
    Mol Biol (Mosk); 2009 Jul 27; 43(1):136-47. PubMed ID: 19334536
    [Abstract] [Full Text] [Related]

  • 7. Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin.
    Cavagnero S, Dyson HJ, Wright PE.
    J Mol Biol; 1999 Jan 08; 285(1):269-82. PubMed ID: 9878405
    [Abstract] [Full Text] [Related]

  • 8. Folding of Aplysia limacina apomyoglobin involves an intermediate in common with other evolutionarily distant globins.
    Musto R, Bigotti MG, Travaglini-Allocatelli C, Brunori M, Cutruzzolà F.
    Biochemistry; 2004 Jan 13; 43(1):230-6. PubMed ID: 14705950
    [Abstract] [Full Text] [Related]

  • 9. Fluoroalcohol-induced stabilization of the alpha-helical intermediates of lentil lectin: implication for non-hierarchical lectin folding.
    Naseem F, Khan RH.
    Arch Biochem Biophys; 2004 Nov 15; 431(2):215-23. PubMed ID: 15488470
    [Abstract] [Full Text] [Related]

  • 10. Cooperativity of folding of the apomyoglobin pH 4 intermediate studied by glycine and proline mutations.
    Luo Y, Kay MS, Baldwin RL.
    Nat Struct Biol; 1997 Nov 15; 4(11):925-30. PubMed ID: 9360609
    [Abstract] [Full Text] [Related]

  • 11. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water.
    Luo P, Baldwin RL.
    Biochemistry; 1997 Jul 08; 36(27):8413-21. PubMed ID: 9204889
    [Abstract] [Full Text] [Related]

  • 12. Diffusive motions control the folding and unfolding kinetics of the apomyoglobin pH 4 molten globule intermediate.
    Ramos CH, Weisbuch S, Jamin M.
    Biochemistry; 2007 Apr 10; 46(14):4379-89. PubMed ID: 17367166
    [Abstract] [Full Text] [Related]

  • 13. Cooperative sub-millisecond folding kinetics of apomyoglobin pH 4 intermediate.
    Weisbuch S, Gérard F, Pasdeloup M, Cappadoro J, Dupont Y, Jamin M.
    Biochemistry; 2005 May 10; 44(18):7013-23. PubMed ID: 15865446
    [Abstract] [Full Text] [Related]

  • 14. Experimental studies of pathways of protein folding.
    Baldwin RL.
    Ciba Found Symp; 1991 May 10; 161():190-201; discussion 201-5. PubMed ID: 1667633
    [Abstract] [Full Text] [Related]

  • 15. Submillisecond unfolding kinetics of apomyoglobin and its pH 4 intermediate.
    Jamin M, Yeh SR, Rousseau DL, Baldwin RL.
    J Mol Biol; 1999 Sep 24; 292(3):731-40. PubMed ID: 10497035
    [Abstract] [Full Text] [Related]

  • 16. Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between alpha-lactalbumin and ribonuclease A.
    Gast K, Zirwer D, Müller-Frohne M, Damaschun G.
    Protein Sci; 1999 Mar 24; 8(3):625-34. PubMed ID: 10091665
    [Abstract] [Full Text] [Related]

  • 17. Stabilisation of alpha-helices by site-directed mutagenesis reveals the importance of secondary structure in the transition state for acylphosphatase folding.
    Taddei N, Chiti F, Fiaschi T, Bucciantini M, Capanni C, Stefani M, Serrano L, Dobson CM, Ramponi G.
    J Mol Biol; 2000 Jul 14; 300(3):633-47. PubMed ID: 10884358
    [Abstract] [Full Text] [Related]

  • 18. 2,2,2-Trifluoroethanol-Induced structural change of peanut agglutinin at different pH: A comparative account.
    Dev S, Khan RH, Surolia A.
    IUBMB Life; 2006 Aug 14; 58(8):473-9. PubMed ID: 16916785
    [Abstract] [Full Text] [Related]

  • 19. Detection of the equilibrium folding intermediate of beta-lactoglobulin in the presence of trifluoroethanol by mass spectrometry.
    Invernizzi G, Grandori R.
    Rapid Commun Mass Spectrom; 2007 Aug 14; 21(6):1049-52. PubMed ID: 17310468
    [Abstract] [Full Text] [Related]

  • 20. Characterization of the non-native trifluoroethanol-induced intermediate conformational state of the Shiga toxin B-subunit.
    Pina DG, Gómez J, England P, Craescu CT, Johannes L, Shnyrov VL.
    Biochimie; 2006 Sep 14; 88(9):1199-207. PubMed ID: 16697101
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.