These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Comparison of two T-state structures of regulatory-chain mutants of Escherichia coli aspartate transcarbamoylase suggests that His20 and Asp19 modulate the response to heterotropic effectors. Stec B, Williams MK, Stieglitz KA, Kantrowitz ER. Acta Crystallogr D Biol Crystallogr; 2007 Dec 21; 63(Pt 12):1243-53. PubMed ID: 18084072 [Abstract] [Full Text] [Related]
23. Intramolecular transmission of the ATP regulatory signal in Escherichia coli aspartate transcarbamylase: specific involvement of a clustered set of amino acid interactions at an interface between regulatory and catalytic subunits. De Staercke C, Van Vliet F, Xi XG, Rani CS, Ladjimi M, Jacobs A, Triniolles F, Hervé G, Cunin R. J Mol Biol; 1995 Feb 10; 246(1):132-43. PubMed ID: 7853393 [Abstract] [Full Text] [Related]
24. Direct observation of an altered quaternary-structure transition in a mutant aspartate transcarbamoylase. Tsuruta H, Vachette P, Kantrowitz ER. Proteins; 1998 Jun 01; 31(4):383-90. PubMed ID: 9626698 [Abstract] [Full Text] [Related]
25. Allosteric signal transmission involves synergy between discrete structural units of the regulatory subunit of aspartate transcarbamoylase. Liu L, Wales ME, Wild JR. Arch Biochem Biophys; 2000 Jan 15; 373(2):352-60. PubMed ID: 10620359 [Abstract] [Full Text] [Related]
26. In the presence of CTP, UTP becomes an allosteric inhibitor of aspartate transcarbamoylase. Wild JR, Loughrey-Chen SJ, Corder TS. Proc Natl Acad Sci U S A; 1989 Jan 15; 86(1):46-50. PubMed ID: 2643106 [Abstract] [Full Text] [Related]
27. Direct structural evidence for a concerted allosteric transition in Escherichia coli aspartate transcarbamoylase. Macol CP, Tsuruta H, Stec B, Kantrowitz ER. Nat Struct Biol; 2001 May 15; 8(5):423-6. PubMed ID: 11323717 [Abstract] [Full Text] [Related]
28. Importance of a conserved residue, aspartate-162, for the function of Escherichia coli aspartate transcarbamoylase. Newton CJ, Stevens RC, Kantrowitz ER. Biochemistry; 1992 Mar 24; 31(11):3026-32. PubMed ID: 1550826 [Abstract] [Full Text] [Related]
29. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP. De Vos D, Xu Y, Aerts T, Van Petegem F, Van Beeumen JJ. Biochem Biophys Res Commun; 2008 Jul 18; 372(1):40-4. PubMed ID: 18477471 [Abstract] [Full Text] [Related]
30. Zn2+ regulation of ornithine transcarbamoylase. I. Mechanism of action. Lee S, Shen WH, Miller AW, Kuo LC. J Mol Biol; 1990 Jan 05; 211(1):255-69. PubMed ID: 2105398 [Abstract] [Full Text] [Related]
31. Probing the regulatory site of Escherichia coli aspartate transcarbamoylase by site-specific mutagenesis. Zhang Y, Kantrowitz ER. Biochemistry; 1992 Jan 28; 31(3):792-8. PubMed ID: 1731936 [Abstract] [Full Text] [Related]
32. Three of the six possible intersubunit stabilizing interactions involving Glu-239 are sufficient for restoration of the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase. Sakash JB, Chan RS, Tsuruta H, Kantrowitz ER. J Biol Chem; 2000 Jan 14; 275(2):752-8. PubMed ID: 10625604 [Abstract] [Full Text] [Related]
33. Allosteric regulation in Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase revisited: association of concerted homotropic cooperative interactions and local heterotropic effects. Tricot C, Villeret V, Sainz G, Dideberg O, Stalon V. J Mol Biol; 1998 Oct 30; 283(3):695-704. PubMed ID: 9784377 [Abstract] [Full Text] [Related]
34. Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains. Eisenstein E, Markby DW, Schachman HK. Proc Natl Acad Sci U S A; 1989 May 30; 86(9):3094-8. PubMed ID: 2566165 [Abstract] [Full Text] [Related]
35. Structural consequences of effector binding to the T state of aspartate carbamoyltransferase: crystal structures of the unligated and ATP- and CTP-complexed enzymes at 2.6-A resolution. Stevens RC, Gouaux JE, Lipscomb WN. Biochemistry; 1990 Aug 21; 29(33):7691-701. PubMed ID: 2271528 [Abstract] [Full Text] [Related]
36. From feedback inhibition to allostery: the enduring example of aspartate transcarbamoylase. Gerhart J. FEBS J; 2014 Jan 21; 281(2):612-20. PubMed ID: 23953008 [Abstract] [Full Text] [Related]
37. The importance of the link between Glu204 of the catalytic chain and Arg130 of the regulatory chain for the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase. Stebbins JW, Kantrowitz ER. J Biol Chem; 1989 Sep 05; 264(25):14860-4. PubMed ID: 2570069 [Abstract] [Full Text] [Related]
38. A second allosteric site in Escherichia coli aspartate transcarbamoylase. Peterson AW, Cockrell GM, Kantrowitz ER. Biochemistry; 2012 Jun 19; 51(24):4776-8. PubMed ID: 22667327 [Abstract] [Full Text] [Related]
39. Heterotropic interactions in Escherichia coli aspartate transcarbamylase. Subunit interfaces involved in CTP inhibition and ATP activation. Xi XG, van Vliet F, Ladjimi MM, de Wannemaeker B, de Staercke C, Glansdorff N, Piérard A, Cunin R, Hervé G. J Mol Biol; 1991 Aug 05; 220(3):789-99. PubMed ID: 1870132 [Abstract] [Full Text] [Related]
40. Lysine-60 in the regulatory chain of Escherichia coli aspartate transcarbamoylase is important for the discrimination between CTP and ATP. Zhang Y, Kantrowitz ER. Biochemistry; 1989 Sep 05; 28(18):7313-8. PubMed ID: 2510822 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]