These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


52 related items for PubMed ID: 9641818

  • 1. [Purinoceptor-induced cytoplasmic calcium oscillation in megakaryocytes].
    Uneyama C.
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1997; (115):49-71. PubMed ID: 9641818
    [Abstract] [Full Text] [Related]

  • 2. Cytoplasmic Ca2+ oscillation in rat megakaryocytes evoked by a novel type of purinoceptor.
    Uneyama C, Uneyama H, Akaike N.
    J Physiol; 1993 Oct; 470():731-49. PubMed ID: 8308753
    [Abstract] [Full Text] [Related]

  • 3. Suramin and reactive blue 2 are antagonists for a newly identified purinoceptor on rat megakaryocyte.
    Uneyama H, Uneyama C, Ebihara S, Akaike N.
    Br J Pharmacol; 1994 Jan; 111(1):245-9. PubMed ID: 7516802
    [Abstract] [Full Text] [Related]

  • 4. Biological actions of purines on rat megakaryocytes: potentiation by adenine of the purinoceptor-operated cytoplasmic Ca2+ oscillation.
    Uneyama C, Uneyama H, Takahashi M, Akaike N.
    Br J Pharmacol; 1994 Jun; 112(2):349-51. PubMed ID: 8075851
    [Abstract] [Full Text] [Related]

  • 5. Not Ca2+ but CAMP is the second messenger for morphological changes in rat megakaryocyte.
    Uneyama C, Imazawa T, Uneyama H, Akaike N, Kawanishi T, Takahashi M.
    Biochem Biophys Res Commun; 1995 Jun 06; 211(1):282-8. PubMed ID: 7779097
    [Abstract] [Full Text] [Related]

  • 6. Cytoplasmic pH regulates ATP-induced Ca(2+)-dependent K(+)-current oscillation in rat megakaryocytes.
    Uneyama C, Uneyama H, Takahashi M, Akaike N.
    Biochem J; 1993 Oct 01; 295 ( Pt 1)(Pt 1):317-20. PubMed ID: 8216236
    [Abstract] [Full Text] [Related]

  • 7. Potassium-current oscillation of rat megakaryocytes: As a model system for drug evaluation (Review).
    Uneyama C, Uneyama H, Torii K, Akaike N.
    Int J Mol Med; 1999 Aug 01; 4(2):163-9. PubMed ID: 10402483
    [Abstract] [Full Text] [Related]

  • 8. Possible involvement of ATP-purinoceptor signalling in the intercellular synchronization of intracellular Ca2+ oscillation in cultured cardiac myocytes.
    Nakayama Y, Kawahara K, Hachiro T, Yamauchi Y, Yoneyama M.
    Biosystems; 2007 Aug 01; 90(1):179-87. PubMed ID: 16996680
    [Abstract] [Full Text] [Related]

  • 9. FCCP modulation of Ca2+ oscillation in rat megakaryocytes.
    Uneyama C, Uneyama H, Takahashi M, Akaike N.
    Eur J Pharmacol; 1994 Aug 16; 268(3):455-8. PubMed ID: 7805773
    [Abstract] [Full Text] [Related]

  • 10. Fluctuations in the concentration of extracellular ATP synchronized with intracellular Ca(2+) oscillatory rhythm in cultured cardiac myocytes.
    Kawahara K, Nakayama Y.
    Chronobiol Int; 2007 Aug 16; 24(6):1035-48. PubMed ID: 18075797
    [Abstract] [Full Text] [Related]

  • 11. Nitrergic and purinergic interplay in inhibitory transmission in rat gastric fundus.
    Vetri T, Bonvissuto F, Marino A, Postorino A.
    Auton Autacoid Pharmacol; 2007 Jul 16; 27(3):151-7. PubMed ID: 17584445
    [Abstract] [Full Text] [Related]

  • 12. Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development.
    Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonté C, Aloisi F, Visentin S.
    Glia; 2005 Apr 15; 50(2):132-44. PubMed ID: 15657938
    [Abstract] [Full Text] [Related]

  • 13. Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation.
    Mounkaïla B, Marthan R, Roux E.
    Respir Res; 2005 Dec 08; 6(1):143. PubMed ID: 16336659
    [Abstract] [Full Text] [Related]

  • 14. Adenine nucleotide regulation in pancreatic beta-cells: modeling of ATP/ADP-Ca2+ interactions.
    Fridlyand LE, Ma L, Philipson LH.
    Am J Physiol Endocrinol Metab; 2005 Nov 08; 289(5):E839-48. PubMed ID: 15985450
    [Abstract] [Full Text] [Related]

  • 15. Kinetic characteristics of thrombin receptor-mediated responses in rat megakaryocytes.
    Uneyama C, Uneyama H, Narisawa K, Takahashi M, Akaike N.
    Eur J Pharmacol; 1997 Jan 29; 319(2-3):299-305. PubMed ID: 9042605
    [Abstract] [Full Text] [Related]

  • 16. Relationship between adenosine-induced vascular effects and ATP-sensitive K+ channels.
    He HM, Wang H, Xiao WB.
    Zhongguo Yao Li Xue Bao; 1999 Mar 29; 20(3):257-61. PubMed ID: 10452103
    [Abstract] [Full Text] [Related]

  • 17. ATP induces intracellular calcium increases and actin cytoskeleton disaggregation via P2x receptors.
    Pubill D, Dayanithi G, Siatka C, Andrés M, Dufour MN, Guillon G, Mendre C.
    Cell Calcium; 2001 May 29; 29(5):299-309. PubMed ID: 11292387
    [Abstract] [Full Text] [Related]

  • 18. Platelet aggregation and adenosine diphosphate/adenosine triphosphate receptors: a historical perspective.
    Packham MA, Mustard JF.
    Semin Thromb Hemost; 2005 Apr 29; 31(2):129-38. PubMed ID: 15852216
    [Abstract] [Full Text] [Related]

  • 19. Multiple actions of extracellular ATP and adenosine on calcium currents mediated by various purinoceptors in neurons of nucleus tractus solitarius.
    Aoki Y, Yamada E, Endoh T, Suzuki T.
    Neurosci Res; 2004 Nov 29; 50(3):245-55. PubMed ID: 15488287
    [Abstract] [Full Text] [Related]

  • 20. ATP regulation of a large conductance voltage-gated cation channel in rough endoplasmic reticulum of rat hepatocytes.
    Ashrafpour M, Eliassi A, Sauve R, Sepehri H, Saghiri R.
    Arch Biochem Biophys; 2008 Mar 01; 471(1):50-6. PubMed ID: 18187033
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 3.