These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


70 related items for PubMed ID: 9642058

  • 1. A superrepressor mutant of the arginine repressor with a correctly predicted alteration of ligand binding specificity.
    Niersbach H, Lin R, Van Duyne GD, Maas WK.
    J Mol Biol; 1998 Jun 19; 279(4):753-60. PubMed ID: 9642058
    [Abstract] [Full Text] [Related]

  • 2. Application of the linear interaction energy method (LIE) to estimate the binding free energy values of Escherichia coli wild-type and mutant arginine repressor C-terminal domain (ArgRc)-l-arginine and ArgRc-l-citrulline protein-ligand complexes.
    Asi AM, Rahman NA, Merican AF.
    J Mol Graph Model; 2004 Mar 19; 22(4):249-62. PubMed ID: 15177077
    [Abstract] [Full Text] [Related]

  • 3. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H, Wang H, Gigot D, Dimova D, Sakanyan V, Glansdorff N, Charlier D.
    J Mol Biol; 2002 Jan 18; 315(3):255-74. PubMed ID: 11786010
    [Abstract] [Full Text] [Related]

  • 4. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins.
    Holtham CA, Jumel K, Miller CM, Harding SE, Baumberg S, Stockley PG.
    J Mol Biol; 1999 Jun 18; 289(4):707-27. PubMed ID: 10369757
    [Abstract] [Full Text] [Related]

  • 5. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM, Weigel P, Takahashi M, Fort C, Versavaud A, Van Duyne G, Charlier D, Hallet JN, Glansdorff N, Sakanyan V.
    J Mol Biol; 1999 Aug 27; 291(4):843-55. PubMed ID: 10452892
    [Abstract] [Full Text] [Related]

  • 6. Structure of the oligomerization and L-arginine binding domain of the arginine repressor of Escherichia coli.
    Van Duyne GD, Ghosh G, Maas WK, Sigler PB.
    J Mol Biol; 1996 Feb 23; 256(2):377-91. PubMed ID: 8594204
    [Abstract] [Full Text] [Related]

  • 7. Quantitative analysis of DNA binding by the Escherichia coli arginine repressor.
    Szwajkajzer D, Dai L, Fukayama JW, Abramczyk B, Fairman R, Carey J.
    J Mol Biol; 2001 Oct 05; 312(5):949-62. PubMed ID: 11580241
    [Abstract] [Full Text] [Related]

  • 8. Mutational analysis of the arginine repressor of Escherichia coli.
    Tian G, Maas WK.
    Mol Microbiol; 1994 Aug 05; 13(4):599-608. PubMed ID: 7997172
    [Abstract] [Full Text] [Related]

  • 9. Assembly of the hexameric Escherichia coli arginine repressor investigated by nano-electrospray ionization time-of-flight mass spectrometry.
    Samalíková M, Carey J, Grandori R.
    Rapid Commun Mass Spectrom; 2005 Aug 05; 19(18):2549-52. PubMed ID: 16106344
    [Abstract] [Full Text] [Related]

  • 10. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA, Marincs F, Baumberg S, Stockley PG, Phillips SE.
    J Mol Biol; 2008 May 30; 379(2):284-98. PubMed ID: 18455186
    [Abstract] [Full Text] [Related]

  • 11. DNA binding of Escherichia coli arginine repressor mutants altered in oligomeric state.
    Chen SH, Merican AF, Sherratt DJ.
    Mol Microbiol; 1997 Jun 30; 24(6):1143-56. PubMed ID: 9218764
    [Abstract] [Full Text] [Related]

  • 12. Ligand-linked structural changes in the Escherichia coli biotin repressor: the significance of surface loops for binding and allostery.
    Streaker ED, Beckett D.
    J Mol Biol; 1999 Sep 24; 292(3):619-32. PubMed ID: 10497026
    [Abstract] [Full Text] [Related]

  • 13. Structure-based redesign of corepressor specificity of the Escherichia coli purine repressor by substitution of residue 190.
    Lu F, Schumacher MA, Arvidson DN, Haldimann A, Wanner BL, Zalkin H, Brennan RG.
    Biochemistry; 1998 Jan 27; 37(4):971-82. PubMed ID: 9454587
    [Abstract] [Full Text] [Related]

  • 14. A single P115Q mutation modulates specificity in the Corynebacterium pseudotuberculosis arginine repressor.
    Mariutti RB, Hernández-González JE, Nascimento AFZ, de Morais MAB, Murakami MT, Carareto CMA, Arni RK.
    Biochim Biophys Acta Gen Subj; 2020 Jul 27; 1864(7):129597. PubMed ID: 32156582
    [Abstract] [Full Text] [Related]

  • 15. Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli.
    Weerasinghe JP, Dong T, Schertzberg MR, Kirchhof MG, Sun Y, Schellhorn HE.
    BMC Microbiol; 2006 Feb 22; 6():14. PubMed ID: 16504055
    [Abstract] [Full Text] [Related]

  • 16. The structure of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator and Co-repressor, L-arginine.
    Cherney LT, Cherney MM, Garen CR, James MN.
    J Mol Biol; 2009 Apr 24; 388(1):85-97. PubMed ID: 19265706
    [Abstract] [Full Text] [Related]

  • 17. Structure of the arginine repressor from Bacillus stearothermophilus.
    Ni J, Sakanyan V, Charlier D, Glansdorff N, Van Duyne GD.
    Nat Struct Biol; 1999 May 24; 6(5):427-32. PubMed ID: 10331868
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12.
    Caldara M, Minh PN, Bostoen S, Massant J, Charlier D.
    J Mol Biol; 2007 Oct 19; 373(2):251-67. PubMed ID: 17850814
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.