These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Disparity-tuned channels of the human visual system. Cormack LK, Stevenson SB, Schor CM. Vis Neurosci; 1993 Jan 21; 10(4):585-96. PubMed ID: 8338798 [Abstract] [Full Text] [Related]
27. Stereoscopic depth magnitude estimation: effects of stimulus spatial frequency and eccentricity. Cisarik PM, Harwerth RS. Behav Brain Res; 2005 May 07; 160(1):88-98. PubMed ID: 15836903 [Abstract] [Full Text] [Related]
28. Cortical area MT and the perception of stereoscopic depth. DeAngelis GC, Cumming BG, Newsome WT. Nature; 1998 Aug 13; 394(6694):677-80. PubMed ID: 9716130 [Abstract] [Full Text] [Related]
29. A simple model accounts for the response of disparity-tuned V1 neurons to anticorrelated images. Read JC, Parker AJ, Cumming BG. Vis Neurosci; 2002 Aug 13; 19(6):735-53. PubMed ID: 12688669 [Abstract] [Full Text] [Related]
30. Vertical size disparity induces enhanced neural responses in good stereo observers. Mitsudo H, Hironaga N, Ogata K, Tobimatsu S. Vision Res; 2019 Nov 13; 164():24-33. PubMed ID: 31557605 [Abstract] [Full Text] [Related]
31. Brain activation difference evoked by different binocular disparities of stereograms: An fMRI study. Wang F, Yang W, Zhang L, Gundran A, Zhu X, Liu J, Li X, Bao S, Gao S. Phys Med; 2016 Oct 13; 32(10):1308-1313. PubMed ID: 27453205 [Abstract] [Full Text] [Related]
32. Perceiving slant about a horizontal axis from stereopsis. Banks MS, Hooge IT, Backus BT. J Vis; 2001 Oct 13; 1(2):55-79. PubMed ID: 12678602 [Abstract] [Full Text] [Related]
33. Early computational processing in binocular vision and depth perception. Read J. Prog Biophys Mol Biol; 2005 Jan 13; 87(1):77-108. PubMed ID: 15471592 [Abstract] [Full Text] [Related]
34. Thresholds for sine-wave corrugations defined by binocular disparity in random dot stereograms: Factor analysis of individual differences reveals two stereoscopic mechanisms tuned for spatial frequency. Peterzell DH, Serrano-Pedraza I, Widdall M, Read JCA. Vision Res; 2017 Dec 13; 141():127-135. PubMed ID: 29155009 [Abstract] [Full Text] [Related]
35. The contribution of vergence change to the measurement of relative disparity. Backus BT, Matza-Brown D. J Vis; 2003 Dec 04; 3(11):737-50. PubMed ID: 14765957 [Abstract] [Full Text] [Related]
36. Neurons in parafoveal areas V1 and V2 encode vertical and horizontal disparities. Durand JB, Zhu S, Celebrini S, Trotter Y. J Neurophysiol; 2002 Nov 04; 88(5):2874-9. PubMed ID: 12424321 [Abstract] [Full Text] [Related]
37. Binocular vision in infancy: Responsiveness to uncrossed horizontal disparity. Kavšek M, Braun SK. Infant Behav Dev; 2016 Aug 04; 44():219-26. PubMed ID: 27454245 [Abstract] [Full Text] [Related]
38. Stereopsis and disparity vergence in monkeys with subnormal binocular vision. Harwerth RS, Smith EL, Crawford ML, von Noorden GK. Vision Res; 1997 Feb 04; 37(4):483-93. PubMed ID: 9156179 [Abstract] [Full Text] [Related]
39. Horizontal fusional amplitudes. Evidence for disparity tuning. Jones R, Stephens GL. Invest Ophthalmol Vis Sci; 1989 Jul 04; 30(7):1638-42. PubMed ID: 2745003 [Abstract] [Full Text] [Related]
40. Neural mechanisms for encoding binocular disparity: receptive field position versus phase. Anzai A, Ohzawa I, Freeman RD. J Neurophysiol; 1999 Aug 04; 82(2):874-90. PubMed ID: 10444684 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]