These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


391 related items for PubMed ID: 9648701

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Regulation of human T helper cell differentiation by antigen-presenting cells: the bee venom phospholipase A2 model.
    Carballido JM, Carballido-Perrig N, Schwärzler C, Lametschwandtner G.
    Chem Immunol Allergy; 2006; 91():147-58. PubMed ID: 16354956
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Immunology of Bee Venom.
    Elieh Ali Komi D, Shafaghat F, Zwiener RD.
    Clin Rev Allergy Immunol; 2018 Jun; 54(3):386-396. PubMed ID: 28105558
    [Abstract] [Full Text] [Related]

  • 29. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses.
    van de Veen W, Stanic B, Yaman G, Wawrzyniak M, Söllner S, Akdis DG, Rückert B, Akdis CA, Akdis M.
    J Allergy Clin Immunol; 2013 Apr; 131(4):1204-12. PubMed ID: 23453135
    [Abstract] [Full Text] [Related]

  • 30. Modulation of T-cell response to phospholipase A2 and phospholipase A2-derived peptides by conventional bee venom immunotherapy.
    Kämmerer R, Chvatchko Y, Kettner A, Dufour N, Corradin G, Spertini F.
    J Allergy Clin Immunol; 1997 Jul; 100(1):96-103. PubMed ID: 9257793
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Antibodies to purified bee venom proteins and peptides. I. Development of a highly specific RAST for bee venom antigens and its application to bee sting allergy.
    Kemeny DM, Harries MG, Youlten LJ, Mackenzie-Mills M, Lessof MH.
    J Allergy Clin Immunol; 1983 May; 71(5):505-14. PubMed ID: 6601672
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Mapping human T cell epitopes on phospholipase A2: the major bee-venom allergen.
    Dhillon M, Roberts C, Nunn T, Kuo M.
    J Allergy Clin Immunol; 1992 Jul; 90(1):42-51. PubMed ID: 1378459
    [Abstract] [Full Text] [Related]

  • 37. Quantification of IgG and IgG4 antibodies to bee venom phospholipase A2 by competitive inhibition in ELISA.
    Rieben R, Blaser K.
    J Immunol Methods; 1989 Apr 21; 119(1):1-8. PubMed ID: 2708823
    [Abstract] [Full Text] [Related]

  • 38. A method to generate antigen-specific suppressor T cells in vitro from peripheral blood T cells of honey bee venom-sensitive, allergic patients.
    Carini C, Iwata M, Warner J, Ishizaka K.
    J Immunol Methods; 1990 Mar 09; 127(2):221-33. PubMed ID: 2138201
    [Abstract] [Full Text] [Related]

  • 39. Epitope peptides and immunotherapy.
    Tanabe S.
    Curr Protein Pept Sci; 2007 Feb 09; 8(1):109-18. PubMed ID: 17305564
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.