These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 9649070

  • 21. Experimental validation of a three-dimensional reduced-order continuum model of phonation.
    Farahani MH, Zhang Z.
    J Acoust Soc Am; 2016 Aug; 140(2):EL172. PubMed ID: 27586776
    [Abstract] [Full Text] [Related]

  • 22. Experimental validation of quasi-one-dimensional and two-dimensional steady glottal flow models.
    Cisonni J, Van Hirtum A, Luo XY, Pelorson X.
    Med Biol Eng Comput; 2010 Sep; 48(9):903-10. PubMed ID: 20556662
    [Abstract] [Full Text] [Related]

  • 23. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C, Zhang Y, Hottinger DG, Jiang JJ.
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [Abstract] [Full Text] [Related]

  • 24. Phonation threshold pressure in a physical model of the vocal fold mucosa.
    Titze IR, Schmidt SS, Titze MR.
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3080-4. PubMed ID: 7759648
    [Abstract] [Full Text] [Related]

  • 25. On the application of the lattice Boltzmann method to the investigation of glottal flow.
    Kucinschi BR, Afjeh AA, Scherer RC.
    J Acoust Soc Am; 2008 Jul; 124(1):523-34. PubMed ID: 18646995
    [Abstract] [Full Text] [Related]

  • 26. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP, Scherer RC, Zhai G, Zhu Z.
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [Abstract] [Full Text] [Related]

  • 27. [Glottal and supraglottal configuration during whispering].
    Fleischer S, Kothe C, Hess M.
    Laryngorhinootologie; 2007 Apr; 86(4):271-5. PubMed ID: 17219333
    [Abstract] [Full Text] [Related]

  • 28. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape.
    Scherer RC, Torkaman S, Kucinschi BR, Afjeh AA.
    J Acoust Soc Am; 2010 Aug; 128(2):828-38. PubMed ID: 20707452
    [Abstract] [Full Text] [Related]

  • 29. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C, Jiang JJ, Zhang Y.
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [Abstract] [Full Text] [Related]

  • 30. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction.
    Kaburagi T, Tanabe Y.
    J Acoust Soc Am; 2009 Jan; 125(1):391-404. PubMed ID: 19173426
    [Abstract] [Full Text] [Related]

  • 31. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S, Scherer RC, Wan M, Wang S, Song B.
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [Abstract] [Full Text] [Related]

  • 32. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M, Berry DA, Montequin DW.
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [Abstract] [Full Text] [Related]

  • 33. A computational study of the effect of vocal-fold asymmetry on phonation.
    Xue Q, Mittal R, Zheng X, Bielamowicz S.
    J Acoust Soc Am; 2010 Aug; 128(2):818-27. PubMed ID: 20707451
    [Abstract] [Full Text] [Related]

  • 34. Asymmetric glottal jet deflection: differences of two- and three-dimensional models.
    Mattheus W, Brücker C.
    J Acoust Soc Am; 2011 Dec; 130(6):EL373-9. PubMed ID: 22225129
    [Abstract] [Full Text] [Related]

  • 35. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D, Scherer RC, DeWitt KJ, Afjeh AA.
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [Abstract] [Full Text] [Related]

  • 36. Flow separation in a computational oscillating vocal fold model.
    Alipour F, Scherer RC.
    J Acoust Soc Am; 2004 Sep; 116(3):1710-9. PubMed ID: 15478438
    [Abstract] [Full Text] [Related]

  • 37. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model.
    Drechsel JS, Thomson SL.
    J Acoust Soc Am; 2008 Jun; 123(6):4434-45. PubMed ID: 18537394
    [Abstract] [Full Text] [Related]

  • 38. Theoretical assessment of unsteady aerodynamic effects in phonation.
    Krane MH, Wei T.
    J Acoust Soc Am; 2006 Sep; 120(3):1578-88. PubMed ID: 17004480
    [Abstract] [Full Text] [Related]

  • 39. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices.
    Lagier A, Guenoun D, Legou T, Espesser R, Giovanni A, Champsaur P.
    Surg Radiol Anat; 2017 Mar; 39(3):257-262. PubMed ID: 27600801
    [Abstract] [Full Text] [Related]

  • 40. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L, Khosla S, Gutmark E.
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.