These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
273 related items for PubMed ID: 9649397
1. Evidence for charge-controlled conformational changes in the photocycle of bacteriorhodopsin. Sass HJ, Gessenich R, Koch MH, Oesterhelt D, Dencher NA, Büldt G, Rapp G. Biophys J; 1998 Jul; 75(1):399-405. PubMed ID: 9649397 [Abstract] [Full Text] [Related]
2. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947 [Abstract] [Full Text] [Related]
4. Two progressive substrates of the M-intermediate can be identified in glucose-embedded, wild-type bacteriorhodopsin. Vonck J, Han BG, Burkard F, Perkins GA, Glaeser RM. Biophys J; 1994 Sep; 67(3):1173-8. PubMed ID: 7811930 [Abstract] [Full Text] [Related]
5. Protein conformational changes in the bacteriorhodopsin photocycle. Subramaniam S, Lindahl M, Bullough P, Faruqi AR, Tittor J, Oesterhelt D, Brown L, Lanyi J, Henderson R. J Mol Biol; 1999 Mar 19; 287(1):145-61. PubMed ID: 10074413 [Abstract] [Full Text] [Related]
6. Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle. Hendrickson FM, Burkard F, Glaeser RM. Biophys J; 1998 Sep 19; 75(3):1446-54. PubMed ID: 9726946 [Abstract] [Full Text] [Related]
7. Fourier transform infrared spectroscopic analysis of altered reaction pathways in site-directed mutants: the D212N mutant of bacteriorhodopsin expressed in Halobacterium halobium. Braiman MS, Klinger AL, Doebler R. Biophys J; 1992 Apr 19; 62(1):56-8. PubMed ID: 1600099 [No Abstract] [Full Text] [Related]
8. The bacteriorhodopsin photocycle: direct structural study of two substrates of the M-intermediate. Han BG, Vonck J, Glaeser RM. Biophys J; 1994 Sep 19; 67(3):1179-86. PubMed ID: 7811931 [Abstract] [Full Text] [Related]
9. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode. Robertson B, Lukashev EP. Biophys J; 1995 Apr 19; 68(4):1507-17. PubMed ID: 7787036 [Abstract] [Full Text] [Related]
10. The tertiary structural changes in bacteriorhodopsin occur between M states: X-ray diffraction and Fourier transform infrared spectroscopy. Sass HJ, Schachowa IW, Rapp G, Koch MH, Oesterhelt D, Dencher NA, Büldt G. EMBO J; 1997 Apr 01; 16(7):1484-91. PubMed ID: 9130693 [Abstract] [Full Text] [Related]
11. Nature of the chromophore binding site of bacteriorhodopsin: the potential role of Arg82 as a principal counterion. Kusnetzow A, Singh DL, Martin CH, Barani IJ, Birge RR. Biophys J; 1999 May 01; 76(5):2370-89. PubMed ID: 10233056 [Abstract] [Full Text] [Related]
13. Structural changes in bacteriorhodopsin during the photocycle measured by time-resolved polarized Fourier transform infrared spectroscopy. Kelemen L, Ormos P. Biophys J; 2001 Dec 01; 81(6):3577-89. PubMed ID: 11721018 [Abstract] [Full Text] [Related]
14. Structure of the N intermediate of bacteriorhodopsin revealed by x-ray diffraction. Kamikubo H, Kataoka M, Váró G, Oka T, Tokunaga F, Needleman R, Lanyi JK. Proc Natl Acad Sci U S A; 1996 Feb 20; 93(4):1386-90. PubMed ID: 8643641 [Abstract] [Full Text] [Related]
15. The effect of protein conformation change from alpha(II) to alpha(I) on the bacteriorhodopsin photocycle. Wang J, El-Sayed MA. Biophys J; 2000 Apr 20; 78(4):2031-6. PubMed ID: 10733981 [Abstract] [Full Text] [Related]
16. Evidence for a controlling role of water in producing the native bacteriorhodopsin structure. Rousso I, Friedman N, Lewis A, Sheves M. Biophys J; 1997 Oct 20; 73(4):2081-9. PubMed ID: 9336203 [Abstract] [Full Text] [Related]
17. Thermal equilibration between the M and N intermediates in the photocycle of bacteriorhodopsin. Druckmann S, Heyn MP, Lanyi JK, Ottolenghi M, Zimanyi L. Biophys J; 1993 Sep 20; 65(3):1231-4. PubMed ID: 8241403 [Abstract] [Full Text] [Related]
18. Coordinating the structural rearrangements associated with unidirectional proton transfer in the bacteriorhodopsin photocycle induced by deprotonation of the proton-release group: a time-resolved difference FTIR spectroscopic study. Morgan JE, Vakkasoglu AS, Lanyi JK, Gennis RB, Maeda A. Biochemistry; 2010 Apr 20; 49(15):3273-81. PubMed ID: 20232848 [Abstract] [Full Text] [Related]
19. Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs. Ihara K, Amemiya T, Miyashita Y, Mukohata Y. Biophys J; 1994 Sep 20; 67(3):1187-91. PubMed ID: 7811932 [Abstract] [Full Text] [Related]
20. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. Brown LS, Bonet L, Needleman R, Lanyi JK. Biophys J; 1993 Jul 20; 65(1):124-30. PubMed ID: 8369421 [Abstract] [Full Text] [Related] Page: [Next] [New Search]