These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 9657693

  • 1. Human cytomegalovirus protease complexes its substrate recognition sequences in an extended peptide conformation.
    LaPlante SR, Aubry N, Bonneau PR, Cameron DR, Lagacé L, Massariol MJ, Montpetit H, Plouffe C, Kawai SH, Fulton BD, Chen Z, Ni F.
    Biochemistry; 1998 Jul 07; 37(27):9793-801. PubMed ID: 9657693
    [Abstract] [Full Text] [Related]

  • 2. Design of fluorogenic peptide substrates for human cytomegalovirus protease based on structure-activity relationship studies.
    Bonneau PR, Plouffe C, Pelletier A, Wernic D, Poupart MA.
    Anal Biochem; 1998 Jan 01; 255(1):59-65. PubMed ID: 9448842
    [Abstract] [Full Text] [Related]

  • 3. Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease.
    Tong L, Qian C, Massariol MJ, Déziel R, Yoakim C, Lagacé L.
    Nat Struct Biol; 1998 Sep 01; 5(9):819-26. PubMed ID: 9731777
    [Abstract] [Full Text] [Related]

  • 4. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR, Pokornowski KA, McCann PJ, Weinheimer SP.
    Virology; 1997 Sep 29; 236(2):338-47. PubMed ID: 9325241
    [Abstract] [Full Text] [Related]

  • 5. Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition.
    Fang B, Boross PI, Tozser J, Weber IT.
    J Mol Biol; 2006 Jul 14; 360(3):654-66. PubMed ID: 16781734
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Evidence of a conformational change in the human cytomegalovirus protease upon binding of peptidyl-activated carbonyl inhibitors.
    Bonneau PR, Grand-Maître C, Greenwood DJ, Lagacé L, LaPlante SR, Massariol MJ, Ogilvie WW, O'Meara JA, Kawai SH.
    Biochemistry; 1997 Oct 14; 36(41):12644-52. PubMed ID: 9376371
    [Abstract] [Full Text] [Related]

  • 10. Cleavage specificity of human rhinovirus-2 2A protease for peptide substrates.
    Wang QM, Sommergruber W, Johnson RB.
    Biochem Biophys Res Commun; 1997 Jun 27; 235(3):562-6. PubMed ID: 9207196
    [Abstract] [Full Text] [Related]

  • 11. Thrombin-bound structures of designed analogs of human fibrinopeptide A determined by quantitative transferred NOE spectroscopy: a new structural basis for thrombin specificity.
    Ni F, Zhu Y, Scheraga HA.
    J Mol Biol; 1995 Oct 06; 252(5):656-71. PubMed ID: 7563081
    [Abstract] [Full Text] [Related]

  • 12. Thrombin activity is unaltered by N-terminal truncation of factor XIII activation peptides.
    Isetti G, Maurer MC.
    Biochemistry; 2004 Apr 13; 43(14):4150-9. PubMed ID: 15065858
    [Abstract] [Full Text] [Related]

  • 13. In vitro processing of HIV-1 nucleocapsid protein by the viral proteinase: effects of amino acid substitutions at the scissile bond in the proximal zinc finger sequence.
    Tözsér J, Shulenin S, Louis JM, Copeland TD, Oroszlan S.
    Biochemistry; 2004 Apr 13; 43(14):4304-12. PubMed ID: 15065874
    [Abstract] [Full Text] [Related]

  • 14. Probing thrombin's ability to accommodate a V34F substitution within the factor XIII activation peptide segment (28-41).
    Isetti G, Maurer MC.
    J Pept Res; 2004 Mar 13; 63(3):241-52. PubMed ID: 15049836
    [Abstract] [Full Text] [Related]

  • 15. Human cytomegalovirus maturational proteinase: expression in Escherichia coli, purification, and enzymatic characterization by using peptide substrate mimics of natural cleavage sites.
    Burck PJ, Berg DH, Luk TP, Sassmannshausen LM, Wakulchik M, Smith DP, Hsiung HM, Becker GW, Gibson W, Villarreal EC.
    J Virol; 1994 May 13; 68(5):2937-46. PubMed ID: 8151764
    [Abstract] [Full Text] [Related]

  • 16. Functional determinants of the Epstein-Barr virus protease.
    Buisson M, Valette E, Hernandez JF, Baudin F, Ebel C, Morand P, Seigneurin JM, Arlaud GJ, Ruigrok RW.
    J Mol Biol; 2001 Aug 03; 311(1):217-28. PubMed ID: 11469870
    [Abstract] [Full Text] [Related]

  • 17. Substrate specificity of the Escherichia coli outer membrane protease OmpT.
    McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G.
    J Bacteriol; 2004 Sep 03; 186(17):5919-25. PubMed ID: 15317797
    [Abstract] [Full Text] [Related]

  • 18. The P1' specificity of tobacco etch virus protease.
    Kapust RB, Tözsér J, Copeland TD, Waugh DS.
    Biochem Biophys Res Commun; 2002 Jun 28; 294(5):949-55. PubMed ID: 12074568
    [Abstract] [Full Text] [Related]

  • 19. ADAM33 enzyme properties and substrate specificity.
    Zou J, Zhang R, Zhu F, Liu J, Madison V, Umland SP.
    Biochemistry; 2005 Mar 22; 44(11):4247-56. PubMed ID: 15766253
    [Abstract] [Full Text] [Related]

  • 20. Comparison of the substrate specificity of two potyvirus proteases.
    Tözsér J, Tropea JE, Cherry S, Bagossi P, Copeland TD, Wlodawer A, Waugh DS.
    FEBS J; 2005 Jan 22; 272(2):514-23. PubMed ID: 15654889
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.