These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 9665820

  • 1. Developmental regulation of elongation factor-1 delta in sea urchin suggests appearance of a mechanism for alternative poly(A) site selection in gastrulae.
    Delalande C, Monnier A, Minella O, Genevière AM, Mulner-Lorillon O, Bellé R, Cormier P.
    Exp Cell Res; 1998 Jul 10; 242(1):228-34. PubMed ID: 9665820
    [Abstract] [Full Text] [Related]

  • 2. A novel sea urchin nuclear receptor encoded by alternatively spliced maternal RNAs.
    Kontrogianni-Konstantopoulos A, Vlahou A, Vu D, Flytzanis CN.
    Dev Biol; 1996 Aug 01; 177(2):371-82. PubMed ID: 8806817
    [Abstract] [Full Text] [Related]

  • 3. Alternative splicing of the Endo16 transcript produces differentially expressed mRNAs during sea urchin gastrulation.
    Godin RE, Urry LA, Ernst SG.
    Dev Biol; 1996 Oct 10; 179(1):148-59. PubMed ID: 8873760
    [Abstract] [Full Text] [Related]

  • 4. Cloning and characterization of HLC-32, a 32-kDa protein component of the sea urchin extraembryonic matrix, the hyaline layer.
    Brennan C, Robinson JJ.
    Dev Biol; 1994 Oct 10; 165(2):556-65. PubMed ID: 7958421
    [Abstract] [Full Text] [Related]

  • 5. Cloning and characterization of novel beta integrin subunits from a sea urchin.
    Marsden M, Burke RD.
    Dev Biol; 1997 Jan 15; 181(2):234-45. PubMed ID: 9013933
    [Abstract] [Full Text] [Related]

  • 6. DNA sequence and pattern of expression of the sea urchin (Paracentrotus lividus) alpha-tubulin genes.
    Gianguzza F, Di Bernardo MG, Sollazzo M, Palla F, Ciaccio M, Carra E, Spinelli G.
    Mol Reprod Dev; 1989 Jan 15; 1(3):170-81. PubMed ID: 2627367
    [Abstract] [Full Text] [Related]

  • 7. A Xenopus laevis gene encoding EF-1 alpha S, the somatic form of elongation factor 1 alpha: sequence, structure, and identification of regulatory elements required for embryonic transcription.
    Johnson AD, Krieg PA.
    Dev Genet; 1995 Jan 15; 17(3):280-90. PubMed ID: 8565334
    [Abstract] [Full Text] [Related]

  • 8. A molecular analysis of hyalin--a substrate for cell adhesion in the hyaline layer of the sea urchin embryo.
    Wessel GM, Berg L, Adelson DL, Cannon G, McClay DR.
    Dev Biol; 1998 Jan 15; 193(2):115-26. PubMed ID: 9473317
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. PLAUF is a novel P. lividus sea urchin RNA-binding protein.
    Pulcrano G, Leonardo R, Aniello F, Mancini P, Piscopo M, Branno M, Fucci L.
    Gene; 2005 Feb 28; 347(1):99-107. PubMed ID: 15715964
    [Abstract] [Full Text] [Related]

  • 11. A rapidly diverging EGF protein regulates species-specific signal transduction in early sea urchin development.
    Kamei N, Swanson WJ, Glabe CG.
    Dev Biol; 2000 Sep 15; 225(2):267-76. PubMed ID: 10985849
    [Abstract] [Full Text] [Related]

  • 12. The betaL integrin subunit is necessary for gastrulation in sea urchin embryos.
    Marsden M, Burke RD.
    Dev Biol; 1998 Nov 01; 203(1):134-48. PubMed ID: 9806779
    [Abstract] [Full Text] [Related]

  • 13. Characterization of sea urchin unconventional myosins and analysis of their patterns of expression during early embryogenesis.
    Sirotkin V, Seipel S, Krendel M, Bonder EM.
    Mol Reprod Dev; 2000 Oct 01; 57(2):111-26. PubMed ID: 10984411
    [Abstract] [Full Text] [Related]

  • 14. Expression of elongation factor 1 alpha (EF-1 alpha) and 1 beta gamma (EF-1 beta gamma) are uncoupled in early Xenopus embryos.
    Morales J, Bassez T, Cormier P, Mulner-Lorillon O, Bellé R, Osborne HB.
    Dev Genet; 1993 Oct 01; 14(6):440-8. PubMed ID: 8111972
    [Abstract] [Full Text] [Related]

  • 15. alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo.
    Hertzler PL, McClay DR.
    Dev Biol; 1999 Mar 01; 207(1):1-13. PubMed ID: 10049560
    [Abstract] [Full Text] [Related]

  • 16. Transient increase of a protein kinase activity identified to CK2 during sea urchin development.
    Delalande C, Bellé R, Cormier P, Mulner-Lorillon O.
    Biochem Biophys Res Commun; 1999 Dec 20; 266(2):425-31. PubMed ID: 10600519
    [Abstract] [Full Text] [Related]

  • 17. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM, McClay DR.
    Dev Biol; 2001 Nov 01; 239(1):132-47. PubMed ID: 11784024
    [Abstract] [Full Text] [Related]

  • 18. Analysis of the sequence and expression during sea urchin development of two members of a multigenic family, coding for butanol-extractable proteins.
    Di Carlo M, Montana G, Bonura A.
    Mol Reprod Dev; 1990 Jan 01; 25(1):28-36. PubMed ID: 1697474
    [Abstract] [Full Text] [Related]

  • 19. Developmental utilization of SpP3A1 and SpP3A2: two proteins which recognize the same DNA target site in several sea urchin gene regulatory regions.
    Zeller RW, Britten RJ, Davidson EH.
    Dev Biol; 1995 Jul 01; 170(1):75-82. PubMed ID: 7601316
    [Abstract] [Full Text] [Related]

  • 20. Dictyostelium ribosomal protein genes and the elongation factor 1B gene show coordinate developmental regulation which is under post-transcriptional control.
    Agarwal AK, Blumberg DD.
    Differentiation; 1999 Jun 01; 64(5):247-54. PubMed ID: 10374261
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.