These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


679 related items for PubMed ID: 9665845

  • 1. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone.
    Packer MJ, Hunter CA.
    J Mol Biol; 1998 Jul 17; 280(3):407-20. PubMed ID: 9665845
    [Abstract] [Full Text] [Related]

  • 2. Sequence-dependent DNA structure: tetranucleotide conformational maps.
    Packer MJ, Dauncey MP, Hunter CA.
    J Mol Biol; 2000 Jan 07; 295(1):85-103. PubMed ID: 10623510
    [Abstract] [Full Text] [Related]

  • 3. Sequence-dependent DNA structure: dinucleotide conformational maps.
    Packer MJ, Dauncey MP, Hunter CA.
    J Mol Biol; 2000 Jan 07; 295(1):71-83. PubMed ID: 10623509
    [Abstract] [Full Text] [Related]

  • 4. DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide X-ray crystal structures.
    Hunter CA, Lu XJ.
    J Mol Biol; 1997 Feb 07; 265(5):603-19. PubMed ID: 9048952
    [Abstract] [Full Text] [Related]

  • 5. Prediction of atomic structure from sequence for double helical DNA oligomers.
    Farwer J, Packer MJ, Hunter CA.
    Biopolymers; 2006 Jan 07; 81(1):51-61. PubMed ID: 16184626
    [Abstract] [Full Text] [Related]

  • 6. Sequence preference for BI/BII conformations in DNA: MD and crystal structure data analysis.
    Madhumalar A, Bansal M.
    J Biomol Struct Dyn; 2005 Aug 07; 23(1):13-27. PubMed ID: 15918673
    [Abstract] [Full Text] [Related]

  • 7. Sequence-dependent DNA structure. The role of base stacking interactions.
    Hunter CA.
    J Mol Biol; 1993 Apr 05; 230(3):1025-54. PubMed ID: 8478917
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA, Breslauer KJ, Olson WK.
    Biopolymers; 1993 Jan 05; 33(1):75-105. PubMed ID: 8427940
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Hairpin loops consisting of single adenine residues closed by sheared A.A and G.G pairs formed by the DNA triplets AAA and GAG: solution structure of the d(GTACAAAGTAC) hairpin.
    Chou SH, Zhu L, Gao Z, Cheng JW, Reid BR.
    J Mol Biol; 1996 Dec 20; 264(5):981-1001. PubMed ID: 9000625
    [Abstract] [Full Text] [Related]

  • 15. Sequence-specific local structural variations in solution structures of d(CGXX'CG)2 and d(CAXX'TG)2 self-complementary deoxyribonucleic acids.
    Lam SL, Au-Yeung SC.
    J Mol Biol; 1997 Mar 07; 266(4):745-60. PubMed ID: 9102467
    [Abstract] [Full Text] [Related]

  • 16. The assessment of the geometry of dinucleotide steps in double-helical DNA; a new local calculation scheme.
    el Hassan MA, Calladine CR.
    J Mol Biol; 1995 Sep 01; 251(5):648-64. PubMed ID: 7666417
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study.
    Mukherjee S, Kailasam S, Bansal M, Bhattacharyya D.
    Biopolymers; 2014 Jan 01; 101(1):107-20. PubMed ID: 23722519
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.