These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
301 related items for PubMed ID: 9671456
21. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Cell; 1993 May 07; 73(3):585-96. PubMed ID: 8387896 [Abstract] [Full Text] [Related]
22. The target of rapamycin signaling pathway regulates mRNA turnover in the yeast Saccharomyces cerevisiae. Albig AR, Decker CJ. Mol Biol Cell; 2001 Nov 07; 12(11):3428-38. PubMed ID: 11694578 [Abstract] [Full Text] [Related]
23. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Shamji AF, Kuruvilla FG, Schreiber SL. Curr Biol; 2001 Nov 07; 10(24):1574-81. PubMed ID: 11137008 [Abstract] [Full Text] [Related]
24. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Schmelzle T, Beck T, Martin DE, Hall MN. Mol Cell Biol; 2004 Jan 07; 24(1):338-51. PubMed ID: 14673167 [Abstract] [Full Text] [Related]
25. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Oficjalska-Pham D, Harismendy O, Smagowicz WJ, Gonzalez de Peredo A, Boguta M, Sentenac A, Lefebvre O. Mol Cell; 2006 Jun 09; 22(5):623-32. PubMed ID: 16762835 [Abstract] [Full Text] [Related]
26. FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity. Cardenas ME, Heitman J. EMBO J; 1995 Dec 01; 14(23):5892-907. PubMed ID: 8846782 [Abstract] [Full Text] [Related]
27. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL. Proc Natl Acad Sci U S A; 1999 Dec 21; 96(26):14866-70. PubMed ID: 10611304 [Abstract] [Full Text] [Related]
28. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Chan TF, Carvalho J, Riles L, Zheng XF. Proc Natl Acad Sci U S A; 2000 Nov 21; 97(24):13227-32. PubMed ID: 11078525 [Abstract] [Full Text] [Related]
29. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Pedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J, De Virgilio C. Mol Cell; 2003 Dec 21; 12(6):1607-13. PubMed ID: 14690612 [Abstract] [Full Text] [Related]
30. Differential Phosphorylation of RNA Polymerase III and the Initiation Factor TFIIIB in Saccharomyces cerevisiae. Lee J, Moir RD, Willis IM. PLoS One; 2015 Dec 21; 10(5):e0127225. PubMed ID: 25970584 [Abstract] [Full Text] [Related]
31. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN. Mol Biol Cell; 1994 Jan 21; 5(1):105-18. PubMed ID: 8186460 [Abstract] [Full Text] [Related]
32. Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. Butcher RA, Bhullar BS, Perlstein EO, Marsischky G, LaBaer J, Schreiber SL. Nat Chem Biol; 2006 Feb 21; 2(2):103-9. PubMed ID: 16415861 [Abstract] [Full Text] [Related]
33. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae. Hu K, Guo S, Yan G, Yuan W, Zheng Y, Jiang Y. Mol Microbiol; 2016 Apr 21; 100(2):303-14. PubMed ID: 26700129 [Abstract] [Full Text] [Related]
34. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT. J Biol Chem; 1995 Jan 13; 270(2):815-22. PubMed ID: 7822316 [Abstract] [Full Text] [Related]
35. The target of rapamycin (TOR) proteins. Raught B, Gingras AC, Sonenberg N. Proc Natl Acad Sci U S A; 2001 Jun 19; 98(13):7037-44. PubMed ID: 11416184 [Abstract] [Full Text] [Related]
36. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. Lee J, Moir RD, Willis IM. J Biol Chem; 2009 May 08; 284(19):12604-8. PubMed ID: 19299514 [Abstract] [Full Text] [Related]
37. Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. Abeliovich H, Dunn WA, Kim J, Klionsky DJ. J Cell Biol; 2000 Nov 27; 151(5):1025-34. PubMed ID: 11086004 [Abstract] [Full Text] [Related]
38. Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XF. EMBO J; 2003 Nov 17; 22(22):6045-56. PubMed ID: 14609951 [Abstract] [Full Text] [Related]
39. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL. Nature; 1994 Jun 30; 369(6483):756-8. PubMed ID: 8008069 [Abstract] [Full Text] [Related]
40. TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors. Rohde JR, Campbell S, Zurita-Martinez SA, Cutler NS, Ashe M, Cardenas ME. Mol Cell Biol; 2004 Oct 30; 24(19):8332-41. PubMed ID: 15367655 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]