These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 9671536
1. Evidence supporting the formation of 2,3-epoxy-3-methylindoline: a reactive intermediate of the pneumotoxin 3-methylindole. Skordos KW, Skiles GL, Laycock JD, Lanza DL, Yost GS. Chem Res Toxicol; 1998 Jul; 11(7):741-9. PubMed ID: 9671536 [Abstract] [Full Text] [Related]
2. Thioether adducts of a new imine reactive intermediate of the pneumotoxin 3-methylindole. Skordos KW, Laycock JD, Yost GS. Chem Res Toxicol; 1998 Nov; 11(11):1326-31. PubMed ID: 9815193 [Abstract] [Full Text] [Related]
3. Metabolism and bioactivation of 3-methylindole by human liver microsomes. Yan Z, Easterwood LM, Maher N, Torres R, Huebert N, Yost GS. Chem Res Toxicol; 2007 Jan; 20(1):140-8. PubMed ID: 17226936 [Abstract] [Full Text] [Related]
4. Metabolism of 3-methylindole by vaccinia-expressed P450 enzymes: correlation of 3-methyleneindolenine formation and protein-binding. Thornton-Manning J, Appleton ML, Gonzalez FJ, Yost GS. J Pharmacol Exp Ther; 1996 Jan; 276(1):21-9. PubMed ID: 8558432 [Abstract] [Full Text] [Related]
5. Deuterium-Labeling Studies Reveal the Mechanism of Cytochrome P450-Catalyzed Formation of 2-Aminoacetophenone from 3-Methylindole (Skatole) in Porcine Liver Microsomes. Gerlach C, Wüst M. J Agric Food Chem; 2017 Dec 13; 65(49):10775-10780. PubMed ID: 29151343 [Abstract] [Full Text] [Related]
6. Mechanistic studies on the cytochrome P450-catalyzed dehydrogenation of 3-methylindole. Skiles GL, Yost GS. Chem Res Toxicol; 1996 Dec 13; 9(1):291-7. PubMed ID: 8924606 [Abstract] [Full Text] [Related]
7. Identification of goat and mouse urinary metabolites of the pneumotoxin, 3-methylindole. Smith DJ, Skiles GL, Appleton ML, Carlson JR, Yost GS. Xenobiotica; 1993 Sep 13; 23(9):1025-44. PubMed ID: 8291262 [Abstract] [Full Text] [Related]
8. Oxygenation of 5,8,11-eicosatrienoic acid by prostaglandin endoperoxide synthase and by cytochrome P450 monooxygenase: structure and mechanism of formation of major metabolites. Oliw EH, Hörnsten L, Sprecher H, Hamberg M. Arch Biochem Biophys; 1993 Sep 13; 305(2):288-97. PubMed ID: 8373167 [Abstract] [Full Text] [Related]
9. Selective dehydrogenation/oxygenation of 3-methylindole by cytochrome p450 enzymes. Lanza DL, Yost GS. Drug Metab Dispos; 2001 Jul 13; 29(7):950-3. PubMed ID: 11408359 [Abstract] [Full Text] [Related]
10. Identification of phase I metabolites of 3-methylindole produced by pig liver microsomes. Diaz GJ, Skordos KW, Yost GS, Squires EJ. Drug Metab Dispos; 1999 Oct 13; 27(10):1150-6. PubMed ID: 10497141 [Abstract] [Full Text] [Related]
11. Production and characterization of specific antibodies: utilization to predict organ- and species-selective pneumotoxicity of 3-methylindole. Kaster JK, Yost GS. Toxicol Appl Pharmacol; 1997 Apr 13; 143(2):324-37. PubMed ID: 9144449 [Abstract] [Full Text] [Related]
12. Inhibition of 3-methylindole bioactivation by the cytochrome P-450 suicide substrates 1-aminobenzotriazole and alpha-methylbenzylaminobenzotriazole. Huijzer JC, Adams JD, Jaw JY, Yost GS. Drug Metab Dispos; 1989 Apr 13; 17(1):37-42. PubMed ID: 2566467 [Abstract] [Full Text] [Related]
13. Identification of new flavone-8-acetic acid metabolites using mouse microsomes and comparison with human microsomes. Pham MH, Auzeil N, Regazzetti A, Dauzonne D, Dugay A, Menet MC, Scherman D, Chabot GG. Drug Metab Dispos; 2007 Nov 13; 35(11):2023-34. PubMed ID: 17664249 [Abstract] [Full Text] [Related]
14. Metabolism of 3-methylindole in human tissues. Ruangyuttikarn W, Appleton ML, Yost GS. Drug Metab Dispos; 1991 Nov 13; 19(5):977-84. PubMed ID: 1686246 [Abstract] [Full Text] [Related]
15. Metabolism and bioactivation of 3-methylindole by Clara cells, alveolar macrophages, and subcellular fractions from rabbit lungs. Thornton-Manning JR, Nichols WK, Manning BW, Skiles GL, Yost GS. Toxicol Appl Pharmacol; 1993 Oct 13; 122(2):182-90. PubMed ID: 8212000 [Abstract] [Full Text] [Related]
16. Evidence for the in vitro metabolism of allylisopropylacetamide to reactive intermediates. Mechanistic studies with oxygen-18. Prickett KS, Baillie TA. Biomed Mass Spectrom; 1984 Jul 13; 11(7):320-31. PubMed ID: 6478043 [Abstract] [Full Text] [Related]
17. Metabolism of capsaicin by cytochrome P450 produces novel dehydrogenated metabolites and decreases cytotoxicity to lung and liver cells. Reilly CA, Ehlhardt WJ, Jackson DA, Kulanthaivel P, Mutlib AE, Espina RJ, Moody DE, Crouch DJ, Yost GS. Chem Res Toxicol; 2003 Mar 13; 16(3):336-49. PubMed ID: 12641434 [Abstract] [Full Text] [Related]
18. Identification of beta-glucuronidase-resistant diastereomeric glucuronides of 3-hydroxy-3-methyloxindole formed during 3-methylindole metabolism in goats. Smith DJ, Appleton ML, Carlson JR, Yost GS. Drug Metab Dispos; 1996 Jan 13; 24(1):119-25. PubMed ID: 8825199 [Abstract] [Full Text] [Related]
19. Cloning and expression of CYP2F3, a cytochrome P450 that bioactivates the selective pneumotoxins 3-methylindole and naphthalene. Wang H, Lanza DL, Yost GS. Arch Biochem Biophys; 1998 Jan 15; 349(2):329-40. PubMed ID: 9448722 [Abstract] [Full Text] [Related]
20. Role of aldehyde oxidase in the hepatic in vitro metabolism of 3-methylindole in pigs. Diaz GJ, Squires EJ. J Agric Food Chem; 2000 Mar 15; 48(3):833-7. PubMed ID: 10725159 [Abstract] [Full Text] [Related] Page: [Next] [New Search]