These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
319 related items for PubMed ID: 9673432
21. Heart rate variability, a target for the effects of angiotensin II in the brain of the trout Oncorhynchus mykiss. Le Mével JC, Mimassi N, Lancien F, Mabin D, Boucher JM, Blanc JJ. Brain Res; 2002 Aug 23; 947(1):34-40. PubMed ID: 12144850 [Abstract] [Full Text] [Related]
22. Vagal Mediation of Low-Frequency Heart Rate Variability During Slow Yogic Breathing. Kromenacker BW, Sanova AA, Marcus FI, Allen JJB, Lane RD. Psychosom Med; 2018 Aug 23; 80(6):581-587. PubMed ID: 29771730 [Abstract] [Full Text] [Related]
23. Effects of autonomic blockade on non-linear cardiovascular variability indices in rats. Beckers F, Verheyden B, Ramaekers D, Swynghedauw B, Aubert AE. Clin Exp Pharmacol Physiol; 2006 Aug 23; 33(5-6):431-9. PubMed ID: 16700875 [Abstract] [Full Text] [Related]
24. Acute adenosine increases cardiac vagal and reduces sympathetic efferent nerve activities in rats. da Silva VJ, Gnecchi-Ruscone T, Bellina V, Oliveira M, Maciel L, de Carvalho AC, Salgado HC, Bergamaschi CM, Tobaldini E, Porta A, Montano N. Exp Physiol; 2012 Jun 23; 97(6):719-29. PubMed ID: 22366563 [Abstract] [Full Text] [Related]
25. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Am J Cardiol; 1991 Jan 15; 67(2):199-204. PubMed ID: 1987723 [Abstract] [Full Text] [Related]
26. Effect of a 'vagomimetic' atropine dose on canine cardiac vagal tone and susceptibility to sudden cardiac death. Halliwill JR, Billman GE, Eckberg DL. Clin Auton Res; 1998 Jun 15; 8(3):155-64. PubMed ID: 9651665 [Abstract] [Full Text] [Related]
27. Identification of low and high frequency ranges for heart rate variability and blood pressure variability analyses using pharmacological autonomic blockade with atropine and propranolol in swine. Poletto R, Janczak AM, Marchant-Forde RM, Marchant JN, Matthews DL, Dowell CA, Hogan DF, Freeman LJ, Lay DC. Physiol Behav; 2011 May 03; 103(2):188-96. PubMed ID: 21281655 [Abstract] [Full Text] [Related]
28. Haemodynamic responses to stimulation of the cardiac autonomic nerves in the anaesthetized cat with closed chest. Barnes RJ, Bower EA, Rink TJ. J Physiol; 1980 Feb 03; 299():55-73. PubMed ID: 7381778 [Abstract] [Full Text] [Related]
29. Low-dose atropine amplifies cardiac vagal modulation and increases dynamic baroreflex function in humans. Cho SK, Hwang GS, Kim YK, Huh IY, Hahm KD, Han SM. Auton Neurosci; 2005 Mar 31; 118(1-2):108-15. PubMed ID: 15795184 [Abstract] [Full Text] [Related]
30. Effects of β-adrenergic stimulation on fetal heart rate, heart rate variability, and T-wave elevation during brief umbilical cord occlusions in fetal sheep. Lear CA, Beacom MJ, Westgate JA, Magawa S, Ikeda T, Bennet L, Gunn AJ. Am J Physiol Regul Integr Comp Physiol; 2020 Nov 01; 319(5):R551-R559. PubMed ID: 32877238 [Abstract] [Full Text] [Related]
31. The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics. Silva LE, Silva CA, Salgado HC, Fazan R. Am J Physiol Heart Circ Physiol; 2017 Mar 01; 312(3):H469-H477. PubMed ID: 28011585 [Abstract] [Full Text] [Related]
32. Redistribution of power spectrum of heart rate variability during acute umbilical artery embolism and hypoxemia in late-gestation fetal sheep. Li X, Tang D, Zhou S, Zhou G, Wang C, Zhuang Y, Wu G, Shen L. Eur J Obstet Gynecol Reprod Biol; 2004 Jun 15; 114(2):137-43. PubMed ID: 15140505 [Abstract] [Full Text] [Related]
33. Dynamic changes in cardiac vagal tone as measured by time-series analysis. Billman GE, Dujardin JP. Am J Physiol; 1990 Mar 15; 258(3 Pt 2):H896-902. PubMed ID: 1969240 [Abstract] [Full Text] [Related]
34. Development of the sympatho-vagal balance in the cardiovascular system in zebrafish (Danio rerio) characterized by power spectrum and classical signal analysis. Schwerte T, Prem C, Mairösl A, Pelster B. J Exp Biol; 2006 Mar 15; 209(Pt 6):1093-100. PubMed ID: 16513936 [Abstract] [Full Text] [Related]
35. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell'Orto S, Piccaluga E. Circ Res; 1986 Aug 15; 59(2):178-93. PubMed ID: 2874900 [Abstract] [Full Text] [Related]
36. Effects of bilateral nephrectomy and angiotensin II replacement on body fluids in foetal sheep. Gibson KJ, Lumbers ER. Clin Exp Pharmacol Physiol; 1999 Oct 15; 26(10):765-73. PubMed ID: 10549399 [Abstract] [Full Text] [Related]
37. Circulating catecholamines partially regulate T-wave morphology but not heart rate variability during repeated umbilical cord occlusions in fetal sheep. Lear CA, Beacom MJ, Kasai M, Westgate JA, Galinsky R, Magawa S, Miyagi E, Ikeda T, Bennet L, Gunn AJ. Am J Physiol Regul Integr Comp Physiol; 2020 Jul 01; 319(1):R123-R131. PubMed ID: 32491938 [Abstract] [Full Text] [Related]
38. Autonomic mechanisms in hemodynamic responses to isometric exercise. Martin CE, Shaver JA, Leon DF, Thompson ME, Reddy PS, Leonard JJ. J Clin Invest; 1974 Jul 01; 54(1):104-15. PubMed ID: 4600046 [Abstract] [Full Text] [Related]
39. Cardiovascular and endocrine responses to acute hypoxaemia during and following dexamethasone infusion in the ovine fetus. Fletcher AJ, Gardner DS, Edwards CM, Fowden AL, Giussani DA. J Physiol; 2003 May 15; 549(Pt 1):271-87. PubMed ID: 12665612 [Abstract] [Full Text] [Related]
40. On the fractal nature of heart rate variability in humans: effects of vagal blockade. Yamamoto Y, Nakamura Y, Sato H, Yamamoto M, Kato K, Hughson RL. Am J Physiol; 1995 Oct 15; 269(4 Pt 2):R830-7. PubMed ID: 7485600 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]