These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
155 related items for PubMed ID: 9675851
1. Characterization of moeB--part of the molybdenum cofactor biosynthesis gene cluster in Staphylococcus carnosus. Neubauer H, Pantel I, Götz F. FEMS Microbiol Lett; 1998 Jul 01; 164(1):55-62. PubMed ID: 9675851 [Abstract] [Full Text] [Related]
2. Identification and characterization of the Staphylococcus carnosus nitrate reductase operon. Pantel I, Lindgren PE, Neubauer H, Götz F. Mol Gen Genet; 1998 Jul 01; 259(1):105-14. PubMed ID: 9738886 [Abstract] [Full Text] [Related]
3. Molybdopterin guanine dinucleotide cofactor in Synechococcus sp. nitrate reductase: identification of mobA and isolation of a putative moeB gene. Rubio LM, Flores E, Herrero A. FEBS Lett; 1999 Dec 03; 462(3):358-62. PubMed ID: 10622725 [Abstract] [Full Text] [Related]
4. Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli. Palmer T, Vasishta A, Whitty PW, Boxer DH. Eur J Biochem; 1994 Jun 01; 222(2):687-92. PubMed ID: 8020507 [Abstract] [Full Text] [Related]
5. Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli. Hasona A, Ray RM, Shanmugam KT. J Bacteriol; 1998 Mar 01; 180(6):1466-72. PubMed ID: 9515915 [Abstract] [Full Text] [Related]
6. Isolation of two Arabidopsis cDNAs involved in early steps of molybdenum cofactor biosynthesis by functional complementation of Escherichia coli mutants. Hoff T, Schnorr KM, Meyer C, Caboche M. J Biol Chem; 1995 Mar 17; 270(11):6100-7. PubMed ID: 7890743 [Abstract] [Full Text] [Related]
7. Deletion of the cnxE gene encoding the gephyrin-like protein involved in the final stages of molybdenum cofactor biosynthesis in Aspergillus nidulans. Millar LJ, Heck IS, Sloan J, Kana'n GJ, Kinghorn JR, Unkles SE. Mol Genet Genomics; 2001 Nov 17; 266(3):445-53. PubMed ID: 11713674 [Abstract] [Full Text] [Related]
8. Molybdenum cofactor (chlorate-resistant) mutants of Klebsiella pneumoniae M5al can use hypoxanthine as the sole nitrogen source. Garzón A, Li J, Flores A, Casadesus J, Stewart V. J Bacteriol; 1992 Oct 17; 174(19):6298-302. PubMed ID: 1400180 [Abstract] [Full Text] [Related]
9. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor. Leimkühler S, Klipp W. FEMS Microbiol Lett; 1999 May 15; 174(2):239-46. PubMed ID: 10339814 [Abstract] [Full Text] [Related]
10. Characterization of the molybdate transport system ModABC of Staphylococcus carnosus. Neubauer H, Pantel I, Lindgren PE, Götz F. Arch Microbiol; 1999 Aug 15; 172(2):109-15. PubMed ID: 10415172 [Abstract] [Full Text] [Related]
11. Molybdoenzyme biosynthesis in Escherichia coli: in vitro activation of purified nitrate reductase from a chlB mutant. Santini CL, Iobbi-Nivol C, Romane C, Boxer DH, Giordano G. J Bacteriol; 1992 Dec 15; 174(24):7934-40. PubMed ID: 1459941 [Abstract] [Full Text] [Related]
12. Characterization of a molybdenum cofactor biosynthetic gene cluster in Rhodobacter capsulatus which is specific for the biogenesis of dimethylsulfoxide reductase. Solomon PS, Shaw AL, Lane I, Hanson GR, Palmer T, McEwan AG. Microbiology (Reading); 1999 Jun 15; 145 ( Pt 6)():1421-1429. PubMed ID: 10411269 [Abstract] [Full Text] [Related]
13. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli. Miller JB, Amy NK. J Bacteriol; 1983 Aug 15; 155(2):793-801. PubMed ID: 6307982 [Abstract] [Full Text] [Related]
14. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G. Mol Microbiol; 1998 May 15; 28(3):435-47. PubMed ID: 9632249 [Abstract] [Full Text] [Related]
15. Involvement of a protein with molybdenum cofactor in the in vitro activation of nitrate reductase from a chlA mutant of Escherichia coli K12. Giordano G, Santini CL, Saracino L, Iobbi C. Biochim Biophys Acta; 1987 Aug 21; 914(3):220-32. PubMed ID: 2956990 [Abstract] [Full Text] [Related]
16. Nitrate reductase activity and heterocyst suppression on nitrate in Anabaena sp. strain PCC 7120 require moeA. Ramaswamy KS, Endley S, Golden JW. J Bacteriol; 1996 Jul 21; 178(13):3893-8. PubMed ID: 8682795 [Abstract] [Full Text] [Related]
17. Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis. Glaser P, Danchin A, Kunst F, Zuber P, Nakano MM. J Bacteriol; 1995 Feb 21; 177(4):1112-5. PubMed ID: 7860592 [Abstract] [Full Text] [Related]
18. Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli. Liu MT, Wuebbens MM, Rajagopalan KV, Schindelin H. J Biol Chem; 2000 Jan 21; 275(3):1814-22. PubMed ID: 10636880 [Abstract] [Full Text] [Related]
19. Identification by mutational analysis of four critical residues in the molybdenum cofactor domain of eukaryotic nitrate reductase. Meyer C, Gonneau M, Caboche M, Rouzé P. FEBS Lett; 1995 Aug 21; 370(3):197-202. PubMed ID: 7656976 [Abstract] [Full Text] [Related]
20. Molybdenum cofactor: a compound in the in vitro activation of both nitrate reductase and trimethylamine-N-oxide reductase activities in Escherichia coli K12. Silvestro A, Pommier J, Giordano G. Biochim Biophys Acta; 1986 Aug 15; 872(3):243-52. PubMed ID: 3524687 [Abstract] [Full Text] [Related] Page: [Next] [New Search]