These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
307 related items for PubMed ID: 9675909
1. Running in the real world: adjusting leg stiffness for different surfaces. Ferris DP, Louie M, Farley CT. Proc Biol Sci; 1998 Jun 07; 265(1400):989-94. PubMed ID: 9675909 [Abstract] [Full Text] [Related]
2. Interaction of leg stiffness and surfaces stiffness during human hopping. Ferris DP, Farley CT. J Appl Physiol (1985); 1997 Jan 07; 82(1):15-22; discussion 13-4. PubMed ID: 9029193 [Abstract] [Full Text] [Related]
3. Runners adjust leg stiffness for their first step on a new running surface. Ferris DP, Liang K, Farley CT. J Biomech; 1999 Aug 07; 32(8):787-94. PubMed ID: 10433420 [Abstract] [Full Text] [Related]
4. Energetics and mechanics of human running on surfaces of different stiffnesses. Kerdok AE, Biewener AA, McMahon TA, Weyand PG, Herr HM. J Appl Physiol (1985); 2002 Feb 07; 92(2):469-78. PubMed ID: 11796653 [Abstract] [Full Text] [Related]
5. Leg stiffness and stride frequency in human running. Farley CT, González O. J Biomech; 1996 Feb 07; 29(2):181-6. PubMed ID: 8849811 [Abstract] [Full Text] [Related]
6. Human hopping on damped surfaces: strategies for adjusting leg mechanics. Moritz CT, Farley CT. Proc Biol Sci; 2003 Aug 22; 270(1525):1741-6. PubMed ID: 12965003 [Abstract] [Full Text] [Related]
7. Adjustments of global and local hindlimb properties during terrestrial locomotion of the common quail (Coturnix coturnix). Andrada E, Nyakatura JA, Bergmann F, Blickhan R. J Exp Biol; 2013 Oct 15; 216(Pt 20):3906-16. PubMed ID: 23868846 [Abstract] [Full Text] [Related]
8. Consequences of forward translation of the point of force application for the mechanics of running. Bullimore SR, Burn JF. J Theor Biol; 2006 Jan 07; 238(1):211-9. PubMed ID: 15996682 [Abstract] [Full Text] [Related]
9. Running on uneven ground: leg adjustment to vertical steps and self-stability. Grimmer S, Ernst M, Günther M, Blickhan R. J Exp Biol; 2008 Sep 07; 211(Pt 18):2989-3000. PubMed ID: 18775936 [Abstract] [Full Text] [Related]
10. Human hoppers compensate for simultaneous changes in surface compression and damping. Moritz CT, Farley CT. J Biomech; 2006 Sep 07; 39(6):1030-8. PubMed ID: 16549093 [Abstract] [Full Text] [Related]
11. Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis. Oudenhoven LM, Boes JM, Hak L, Faber GS, Houdijk H. J Biomech; 2017 Jan 25; 51():42-48. PubMed ID: 27923481 [Abstract] [Full Text] [Related]
12. Leg and vertical stiffness (a)symmetry between dominant and non-dominant legs in young male runners. Pappas P, Paradisis G, Vagenas G. Hum Mov Sci; 2015 Apr 25; 40():273-83. PubMed ID: 25625812 [Abstract] [Full Text] [Related]
13. The effect of speed on leg stiffness and joint kinetics in human running. Arampatzis A, Brüggemann GP, Metzler V. J Biomech; 1999 Dec 25; 32(12):1349-53. PubMed ID: 10569714 [Abstract] [Full Text] [Related]
14. Effective leg stiffness in running. Blum Y, Lipfert SW, Seyfarth A. J Biomech; 2009 Oct 16; 42(14):2400-5. PubMed ID: 19647825 [Abstract] [Full Text] [Related]
15. Leg stiffness decreases during a run to exhaustion at the speed at VO2max. Hayes PR, Caplan N. Eur J Sport Sci; 2014 Oct 16; 14(6):556-62. PubMed ID: 24410623 [Abstract] [Full Text] [Related]
16. Mechanics of running under simulated low gravity. He JP, Kram R, McMahon TA. J Appl Physiol (1985); 1991 Sep 16; 71(3):863-70. PubMed ID: 1757322 [Abstract] [Full Text] [Related]
17. Changes in spring-mass characteristics during treadmill running to exhaustion. Dutto DJ, Smith GA. Med Sci Sports Exerc; 2002 Aug 16; 34(8):1324-31. PubMed ID: 12165688 [Abstract] [Full Text] [Related]
18. Bilateral deficit of spring-like behaviour during hopping in sprinters. Otsuka M, Kurihara T, Isaka T. Eur J Appl Physiol; 2018 Feb 16; 118(2):475-481. PubMed ID: 29260403 [Abstract] [Full Text] [Related]
19. Low leg compliance permits grounded running at speeds where the inverted pendulum model gets airborne. Andrada E, Blickhan R, Ogihara N, Rode C. J Theor Biol; 2020 Jun 07; 494():110227. PubMed ID: 32142807 [Abstract] [Full Text] [Related]
20. Arms are different from legs: mechanics and energetics of human hand-running. Glasheen JW, McMahon TA. J Appl Physiol (1985); 1995 Apr 07; 78(4):1280-7. PubMed ID: 7615434 [Abstract] [Full Text] [Related] Page: [Next] [New Search]