These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


55 related items for PubMed ID: 9676269

  • 1. Determining ligand orientation and transphosphonylation mechanisms on acetylcholinesterase by Rp, Sp enantiomer selectivity and site-specific mutagenesis.
    Taylor P, Hosea NA, Tsigelny I, Radić Z, Berman HA.
    Enantiomer; 1997; 2(3-4):249-60. PubMed ID: 9676269
    [Abstract] [Full Text] [Related]

  • 2. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases.
    Hosea NA, Berman HA, Taylor P.
    Biochemistry; 1995 Sep 12; 34(36):11528-36. PubMed ID: 7547883
    [Abstract] [Full Text] [Related]

  • 3. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates.
    Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P.
    Biochem J; 2003 Jul 01; 373(Pt 1):33-40. PubMed ID: 12665427
    [Abstract] [Full Text] [Related]

  • 4. Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates.
    Hosea NA, Radić Z, Tsigelny I, Berman HA, Quinn DM, Taylor P.
    Biochemistry; 1996 Aug 20; 35(33):10995-1004. PubMed ID: 8718893
    [Abstract] [Full Text] [Related]

  • 5. Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis.
    Wong L, Radic Z, Brüggemann RJ, Hosea N, Berman HA, Taylor P.
    Biochemistry; 2000 May 16; 39(19):5750-7. PubMed ID: 10801325
    [Abstract] [Full Text] [Related]

  • 6. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates.
    Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P.
    Biochemistry; 2004 Mar 23; 43(11):3222-9. PubMed ID: 15023072
    [Abstract] [Full Text] [Related]

  • 7. Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers.
    Ordentlich A, Barak D, Kronman C, Benschop HP, De Jong LP, Ariel N, Barak R, Segall Y, Velan B, Shafferman A.
    Biochemistry; 1999 Mar 09; 38(10):3055-66. PubMed ID: 10074358
    [Abstract] [Full Text] [Related]

  • 8. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library.
    Nowlan C, Li Y, Hermann JC, Evans T, Carpenter J, Ghanem E, Shoichet BK, Raushel FM.
    J Am Chem Soc; 2006 Dec 13; 128(49):15892-902. PubMed ID: 17147402
    [Abstract] [Full Text] [Related]

  • 9. Functional requirements for the optimal catalytic configuration of the AChE active center.
    Shafferman A, Barak D, Kaplan D, Ordentlich A, Kronman C, Velan B.
    Chem Biol Interact; 2005 Dec 15; 157-158():123-31. PubMed ID: 16256968
    [Abstract] [Full Text] [Related]

  • 10. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase.
    Ekström F, Akfur C, Tunemalm AK, Lundberg S.
    Biochemistry; 2006 Jan 10; 45(1):74-81. PubMed ID: 16388582
    [Abstract] [Full Text] [Related]

  • 11. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL, Cusack B, Davies MP, Fauq A, Rosenberry TL.
    Biochemistry; 2003 May 13; 42(18):5438-52. PubMed ID: 12731886
    [Abstract] [Full Text] [Related]

  • 12. Is aromaticity essential for trapping the catalytic histidine 447 in human acetylcholinesterase?
    Kaplan D, Barak D, Ordentlich A, Kronman C, Velan B, Shafferman A.
    Biochemistry; 2004 Mar 23; 43(11):3129-36. PubMed ID: 15023064
    [Abstract] [Full Text] [Related]

  • 13. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge.
    Tara S, Elcock AH, Kirchhoff PD, Briggs JM, Radic Z, Taylor P, McCammon JA.
    Biopolymers; 1998 Dec 23; 46(7):465-74. PubMed ID: 9838872
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6.
    Ellis SW, Hayhurst GP, Lightfoot T, Smith G, Harlow J, Rowland-Yeo K, Larsson C, Mahling J, Lim CK, Wolf CR, Blackburn MG, Lennard MS, Tucker GT.
    Biochem J; 2000 Feb 01; 345 Pt 3(Pt 3):565-71. PubMed ID: 10642515
    [Abstract] [Full Text] [Related]

  • 16. Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry.
    Jennings LL, Malecki M, Komives EA, Taylor P.
    Biochemistry; 2003 Sep 23; 42(37):11083-91. PubMed ID: 12974645
    [Abstract] [Full Text] [Related]

  • 17. Crystal packing mediates enantioselective ligand recognition at the peripheral site of acetylcholinesterase.
    Haviv H, Wong DM, Greenblatt HM, Carlier PR, Pang YP, Silman I, Sussman JL.
    J Am Chem Soc; 2005 Aug 10; 127(31):11029-36. PubMed ID: 16076210
    [Abstract] [Full Text] [Related]

  • 18. Synthesis and 31P chemical shift identification of tripeptide active site models that represent human serum acetylcholinesterase covalently modified at serine by certain organophosphates.
    Thompson CM, Suarez AI, Rodriguez OP.
    Chem Res Toxicol; 1996 Dec 10; 9(8):1325-32. PubMed ID: 8951236
    [Abstract] [Full Text] [Related]

  • 19. A collaborative endeavor to design cholinesterase-based catalytic scavengers against toxic organophosphorus esters.
    Masson P, Nachon F, Broomfield CA, Lenz DE, Verdier L, Schopfer LM, Lockridge O.
    Chem Biol Interact; 2008 Sep 25; 175(1-3):273-80. PubMed ID: 18508040
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 3.