These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


395 related items for PubMed ID: 9677321

  • 1. Linear and cyclic peptides as substrates and modulators of P-glycoprotein: peptide binding and effects on drug transport and accumulation.
    Sharom FJ, Lu P, Liu R, Yu X.
    Biochem J; 1998 Aug 01; 333 ( Pt 3)(Pt 3):621-30. PubMed ID: 9677321
    [Abstract] [Full Text] [Related]

  • 2. Interaction of the P-glycoprotein multidrug transporter (MDR1) with high affinity peptide chemosensitizers in isolated membranes, reconstituted systems, and intact cells.
    Sharom FJ, Yu X, Lu P, Liu R, Chu JW, Szabó K, Müller M, Hose CD, Monks A, Váradi A, Seprôdi J, Sarkadi B.
    Biochem Pharmacol; 1999 Aug 15; 58(4):571-86. PubMed ID: 10413294
    [Abstract] [Full Text] [Related]

  • 3. Synthetic hydrophobic peptides are substrates for P-glycoprotein and stimulate drug transport.
    Sharom FJ, Yu X, DiDiodato G, Chu JW.
    Biochem J; 1996 Dec 01; 320 ( Pt 2)(Pt 2):421-8. PubMed ID: 8973548
    [Abstract] [Full Text] [Related]

  • 4. Interaction of the P-glycoprotein multidrug transporter with peptides and ionophores.
    Sharom FJ, DiDiodato G, Yu X, Ashbourne KJ.
    J Biol Chem; 1995 Apr 28; 270(17):10334-41. PubMed ID: 7730340
    [Abstract] [Full Text] [Related]

  • 5. Efficiency of P-glycoprotein-mediated exclusion of rhodamine dyes from multidrug-resistant cells is determined by their passive transmembrane movement rate.
    Eytan GD, Regev R, Oren G, Hurwitz CD, Assaraf YG.
    Eur J Biochem; 1997 Aug 15; 248(1):104-12. PubMed ID: 9310367
    [Abstract] [Full Text] [Related]

  • 6. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity.
    Borgnia MJ, Eytan GD, Assaraf YG.
    J Biol Chem; 1996 Feb 09; 271(6):3163-71. PubMed ID: 8621716
    [Abstract] [Full Text] [Related]

  • 7. Stoichiometry of coupling of rhodamine 123 transport to ATP hydrolysis by P-glycoprotein.
    Shapiro AB, Ling V.
    Eur J Biochem; 1998 May 15; 254(1):189-93. PubMed ID: 9652413
    [Abstract] [Full Text] [Related]

  • 8. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities.
    Shapiro AB, Ling V.
    Eur J Biochem; 1997 Nov 15; 250(1):130-7. PubMed ID: 9432000
    [Abstract] [Full Text] [Related]

  • 9. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.
    Muñoz-Martínez F, Lu P, Cortés-Selva F, Pérez-Victoria JM, Jiménez IA, Ravelo AG, Sharom FJ, Gamarro F, Castanys S.
    Cancer Res; 2004 Oct 01; 64(19):7130-8. PubMed ID: 15466210
    [Abstract] [Full Text] [Related]

  • 10. Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation.
    Piwnica-Worms D, Rao VV, Kronauge JF, Croop JM.
    Biochemistry; 1995 Sep 26; 34(38):12210-20. PubMed ID: 7547962
    [Abstract] [Full Text] [Related]

  • 11. Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter.
    Romsicki Y, Sharom FJ.
    Biochemistry; 2001 Jun 12; 40(23):6937-47. PubMed ID: 11389609
    [Abstract] [Full Text] [Related]

  • 12. Bile acid inhibition of P-glycoprotein-mediated transport in multidrug-resistant cells and rat liver canalicular membrane vesicles.
    Mazzanti R, Fantappié O, Kamimoto Y, Gatmaitan Z, Gentilini P, Arias IM.
    Hepatology; 1994 Jul 12; 20(1 Pt 1):170-6. PubMed ID: 7912687
    [Abstract] [Full Text] [Related]

  • 13. The ability of verapamil to restore intracellular accumulation of anthracyclines in multidrug resistant cells depends on the kinetics of their uptake.
    Mankhetkorn S, Garnier-Suillerot A.
    Eur J Pharmacol; 1998 Feb 19; 343(2-3):313-21. PubMed ID: 9570481
    [Abstract] [Full Text] [Related]

  • 14. The ATPase and ATP-binding functions of P-glycoprotein--modulation by interaction with defined phospholipids.
    Romsicki Y, Sharom FJ.
    Eur J Biochem; 1998 Aug 15; 256(1):170-8. PubMed ID: 9746361
    [Abstract] [Full Text] [Related]

  • 15. Proximity of bound Hoechst 33342 to the ATPase catalytic sites places the drug binding site of P-glycoprotein within the cytoplasmic membrane leaflet.
    Qu Q, Sharom FJ.
    Biochemistry; 2002 Apr 09; 41(14):4744-52. PubMed ID: 11926837
    [Abstract] [Full Text] [Related]

  • 16. Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis.
    Eytan GD, Regev R, Assaraf YG.
    J Biol Chem; 1996 Feb 09; 271(6):3172-8. PubMed ID: 8621717
    [Abstract] [Full Text] [Related]

  • 17. Interaction of combinations of drugs, chemosensitizers, and peptides with the P-glycoprotein multidrug transporter.
    DiDiodato G, Sharom FJ.
    Biochem Pharmacol; 1997 Jun 15; 53(12):1789-97. PubMed ID: 9256153
    [Abstract] [Full Text] [Related]

  • 18. Probing the interaction of the multidrug-resistance phenotype with the polypeptide ionophore gramicidin D via functional channel formation.
    Assaraf YG, Borgnia MJ.
    Eur J Biochem; 1994 Jun 15; 222(3):813-24. PubMed ID: 7517866
    [Abstract] [Full Text] [Related]

  • 19. Comparison of the kinetics of active efflux of 99mTc-MIBI in cells with P-glycoprotein-mediated and multidrug-resistance protein-associated multidrug-resistance phenotypes.
    Vergote J, Moretti JL, de Vries EG, Garnier-Suillerot A.
    Eur J Biochem; 1998 Feb 15; 252(1):140-6. PubMed ID: 9523723
    [Abstract] [Full Text] [Related]

  • 20. Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains.
    Liu R, Sharom FJ.
    Biochemistry; 1996 Sep 10; 35(36):11865-73. PubMed ID: 8794769
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.