These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 9681995

  • 21. Cytochalasin B binding by human platelets.
    Zobel CR, Jung CY.
    J Cell Physiol; 1982 Nov; 113(2):320-3. PubMed ID: 7174734
    [Abstract] [Full Text] [Related]

  • 22. Transmembrane glucose carriers in the monkey lens. Quantitation and regional distribution as determined by cytochalasin B binding to lens membranes.
    Lucas VA, Zigler JS.
    Invest Ophthalmol Vis Sci; 1987 Aug; 28(8):1404-12. PubMed ID: 3610555
    [Abstract] [Full Text] [Related]

  • 23. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.
    Sage JM, Cura AJ, Lloyd KP, Carruthers A.
    Am J Physiol Cell Physiol; 2015 May 15; 308(10):C827-34. PubMed ID: 25715702
    [Abstract] [Full Text] [Related]

  • 24. Dual action of phenylarsine oxide on the glucose transport activity of GLUT1.
    Scott J, Opejin A, Tidball A, Stehouwer N, Rekman J, Louters LL.
    Chem Biol Interact; 2009 Dec 10; 182(2-3):199-203. PubMed ID: 19686715
    [Abstract] [Full Text] [Related]

  • 25. Differential regulation of the GLUT1 and GLUT3 glucose transporters by growth factors and pro-inflammatory cytokines in equine articular chondrocytes.
    Phillips T, Ferraz I, Bell S, Clegg PD, Carter SD, Mobasheri A.
    Vet J; 2005 Mar 10; 169(2):216-22. PubMed ID: 15727913
    [Abstract] [Full Text] [Related]

  • 26. Genetic evidence indicating the identity of the cytochalasin B photolabelled components in rat myoblasts.
    Chen SR, Lo TC.
    Biochem Int; 1990 Mar 10; 20(4):747-59. PubMed ID: 2353924
    [Abstract] [Full Text] [Related]

  • 27. Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport.
    Abbud W, Habinowski S, Zhang JZ, Kendrew J, Elkairi FS, Kemp BE, Witters LA, Ismail-Beigi F.
    Arch Biochem Biophys; 2000 Aug 15; 380(2):347-52. PubMed ID: 10933890
    [Abstract] [Full Text] [Related]

  • 28. GLUT1 transmembrane glucose pathway. Affinity labeling with a transportable D-glucose diazirine.
    Lachaal M, Rampal AL, Lee W, Shi Y, Jung CY.
    J Biol Chem; 1996 Mar 01; 271(9):5225-30. PubMed ID: 8617806
    [Abstract] [Full Text] [Related]

  • 29. Structural and physiologic determinants of human erythrocyte sugar transport regulation by adenosine triphosphate.
    Levine KB, Cloherty EK, Fidyk NJ, Carruthers A.
    Biochemistry; 1998 Sep 01; 37(35):12221-32. PubMed ID: 9724536
    [Abstract] [Full Text] [Related]

  • 30. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE, Cloherty EK, Zottola RJ, Carruthers A.
    Biochemistry; 1995 Aug 01; 34(30):9762-73. PubMed ID: 7626647
    [Abstract] [Full Text] [Related]

  • 31. Characterization of glucose transport and glucose transporters in the human choriocarcinoma cell line, BeWo.
    Shah SW, Zhao H, Low SY, Mcardle HJ, Hundal HS.
    Placenta; 1999 Nov 01; 20(8):651-9. PubMed ID: 10527819
    [Abstract] [Full Text] [Related]

  • 32. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK, Levine KB, Carruthers A.
    Biochemistry; 2001 Dec 25; 40(51):15549-61. PubMed ID: 11747430
    [Abstract] [Full Text] [Related]

  • 33. Purification and characterization of human erythrocyte glucose transporter in decylmaltoside detergent solution.
    Boulter JM, Wang DN.
    Protein Expr Purif; 2001 Jul 25; 22(2):337-48. PubMed ID: 11437611
    [Abstract] [Full Text] [Related]

  • 34. The human erythrocyte sugar transporter presents two sugar import sites.
    Hamill S, Cloherty EK, Carruthers A.
    Biochemistry; 1999 Dec 21; 38(51):16974-83. PubMed ID: 10606533
    [Abstract] [Full Text] [Related]

  • 35. Glucose-induced activation of glucose uptake in cells from the inner and outer blood-retinal barrier.
    Busik JV, Olson LK, Grant MB, Henry DN.
    Invest Ophthalmol Vis Sci; 2002 Jul 21; 43(7):2356-63. PubMed ID: 12091438
    [Abstract] [Full Text] [Related]

  • 36. Insulin-sensitive regulation of glucose transport and GLUT4 translocation in skeletal muscle of GLUT1 transgenic mice.
    Etgen GJ, Zavadoski WJ, Holman GD, Gibbs EM.
    Biochem J; 1999 Jan 01; 337 ( Pt 1)(Pt 1):51-7. PubMed ID: 9854024
    [Abstract] [Full Text] [Related]

  • 37. Photoaffinity labeling of the K562 cell membrane D-glucose transporter with cytochalasin B.
    Uezato T.
    Biochem Int; 1986 Feb 01; 12(2):199-206. PubMed ID: 3457566
    [Abstract] [Full Text] [Related]

  • 38. Glucose transport and apoptosis after gene therapy with HSV thymidine kinase.
    Haberkorn U, Altmann A, Kamencic H, Morr I, Traut U, Henze M, Jiang S, Metz J, Kinscherf R.
    Eur J Nucl Med; 2001 Nov 01; 28(11):1690-6. PubMed ID: 11702112
    [Abstract] [Full Text] [Related]

  • 39. Photoaffinity labeling of the stereospecific D-glucose transport system with cytochalasin B.
    Pessin JE, Tillotson LG, Isselbacher KJ, Czech MP.
    Fed Proc; 1984 May 15; 43(8):2258-61. PubMed ID: 6538854
    [Abstract] [Full Text] [Related]

  • 40. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK, Carruthers A.
    J Biol Chem; 2016 Dec 23; 291(52):26762-26772. PubMed ID: 27836974
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.