These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 9682482

  • 1. Evidence against the double-arginine motif as the only determinant for protein translocation by a novel Sec-independent pathway in Escherichia coli.
    Brüser T, Deutzmann R, Dahl C.
    FEMS Microbiol Lett; 1998 Jul 15; 164(2):329-36. PubMed ID: 9682482
    [Abstract] [Full Text] [Related]

  • 2. Membrane targeting of a folded and cofactor-containing protein.
    Brüser T, Yano T, Brune DC, Daldal F.
    Eur J Biochem; 2003 Mar 15; 270(6):1211-21. PubMed ID: 12631279
    [Abstract] [Full Text] [Related]

  • 3. Electrophysiological studies in Xenopus oocytes for the opening of Escherichia coli SecA-dependent protein-conducting channels.
    Lin BR, Gierasch LM, Jiang C, Tai PC.
    J Membr Biol; 2006 Mar 15; 214(2):103-13. PubMed ID: 17530158
    [Abstract] [Full Text] [Related]

  • 4. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
    Huang Q, Palmer T.
    mBio; 2017 Aug 01; 8(4):. PubMed ID: 28765221
    [Abstract] [Full Text] [Related]

  • 5. Extracellular secretion of pectate lyase by the Erwinia chrysanthemi out pathway is dependent upon Sec-mediated export across the inner membrane.
    He SY, Schoedel C, Chatterjee AK, Collmer A.
    J Bacteriol; 1991 Jul 01; 173(14):4310-7. PubMed ID: 1829728
    [Abstract] [Full Text] [Related]

  • 6. The Sec system.
    Driessen AJ, Fekkes P, van der Wolk JP.
    Curr Opin Microbiol; 1998 Apr 01; 1(2):216-22. PubMed ID: 10066476
    [Abstract] [Full Text] [Related]

  • 7. Cloning and sequencing of the gene encoding the high potential iron-sulfur protein (HiPIP) from the purple sulfur bacterium Chromatium vinosum.
    Brüser T, Trüper HG, Dahl C.
    Biochim Biophys Acta; 1997 May 02; 1352(1):18-22. PubMed ID: 9177478
    [Abstract] [Full Text] [Related]

  • 8. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.
    Cristóbal S, de Gier JW, Nielsen H, von Heijne G.
    EMBO J; 1999 Jun 01; 18(11):2982-90. PubMed ID: 10357811
    [Abstract] [Full Text] [Related]

  • 9. A signal peptide that directs non-Sec transport in bacteria also directs efficient and exclusive transport on the thylakoid Delta pH pathway.
    Mori H, Cline K.
    J Biol Chem; 1998 May 08; 273(19):11405-8. PubMed ID: 9565548
    [Abstract] [Full Text] [Related]

  • 10. Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane.
    Müller M, Koch HG, Beck K, Schäfer U.
    Prog Nucleic Acid Res Mol Biol; 2001 May 08; 66():107-57. PubMed ID: 11051763
    [Abstract] [Full Text] [Related]

  • 11. Tat transport of linker-containing proteins in Escherichia coli.
    Lindenstrauss U, Brüser T.
    FEMS Microbiol Lett; 2009 Jun 08; 295(1):135-40. PubMed ID: 19473260
    [Abstract] [Full Text] [Related]

  • 12. An artificial transmembrane segment directs SecA, SecB, and electrochemical potential-dependent translocation of a long amino-terminal tail.
    McMurry JL, Kendall DA.
    J Biol Chem; 1999 Mar 05; 274(10):6776-82. PubMed ID: 10037778
    [Abstract] [Full Text] [Related]

  • 13. Competition between functional signal peptides demonstrates variation in affinity for the secretion pathway.
    Chen H, Kim J, Kendall DA.
    J Bacteriol; 1996 Dec 05; 178(23):6658-64. PubMed ID: 8955279
    [Abstract] [Full Text] [Related]

  • 14. [Molecular mechanisms for preprotein translocation across the cytoplasmic membrane of E. coli--structure changes of SecA and SecG coupled with translocation].
    Nishiyama K.
    Seikagaku; 2000 Dec 05; 72(12):1383-97. PubMed ID: 11201101
    [No Abstract] [Full Text] [Related]

  • 15. Signal peptide determinants of SecA binding and stimulation of ATPase activity.
    Wang L, Miller A, Kendall DA.
    J Biol Chem; 2000 Apr 07; 275(14):10154-9. PubMed ID: 10744698
    [Abstract] [Full Text] [Related]

  • 16. Positively charged residues influence the degree of SecA dependence in protein translocation across the E. coli inner membrane.
    Andersson H, von Heijne G.
    FEBS Lett; 1994 Jun 27; 347(2-3):169-72. PubMed ID: 8033997
    [Abstract] [Full Text] [Related]

  • 17. Twin arginine translocase pathway and fast-folding lipoprotein biosynthesis in E. coli: interesting implications and applications.
    Shruthi H, Anand P, Murugan V, Sankaran K.
    Mol Biosyst; 2010 Jun 27; 6(6):999-1007. PubMed ID: 20485744
    [Abstract] [Full Text] [Related]

  • 18. The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms.
    Bruscella P, Cassagnaud L, Ratouchniak J, Brasseur G, Lojou E, Amils R, Bonnefoy V.
    Microbiology (Reading); 2005 May 27; 151(Pt 5):1421-1431. PubMed ID: 15870452
    [Abstract] [Full Text] [Related]

  • 19. The filamentous bacteriophage assembly proteins require the bacterial SecA protein for correct localization to the membrane.
    Rapoza MP, Webster RE.
    J Bacteriol; 1993 Mar 27; 175(6):1856-9. PubMed ID: 8449893
    [Abstract] [Full Text] [Related]

  • 20. SecA-independent translocation of the periplasmic N-terminal tail of an Escherichia coli inner membrane protein. Position-specific effects on translocation of positively charged residues and construction of a protein with a C-terminal translocation signal.
    Whitley P, Gafvelin G, von Heijne G.
    J Biol Chem; 1995 Dec 15; 270(50):29831-5. PubMed ID: 8530378
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.