These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
109 related items for PubMed ID: 9685644
1. Fast wave activity in the rat rhinencephalon: elicitation by the odors of phytochemicals, organic solvents, and a rodent predator. Zibrowski EM, Hoh TE, Vanderwolf CH. Brain Res; 1998 Aug 03; 800(2):207-15. PubMed ID: 9685644 [Abstract] [Full Text] [Related]
3. Oscillatory fast wave activity in the rat pyriform cortex: relations to olfaction and behavior. Zibrowski EM, Vanderwolf CH. Brain Res; 1997 Aug 22; 766(1-2):39-49. PubMed ID: 9359585 [Abstract] [Full Text] [Related]
4. Components of weasel and fox odors elicit fast wave bursts in the dentate gyrus of rats. Heale VR, Vanderwolf CH, Kavaliers M. Behav Brain Res; 1994 Aug 31; 63(2):159-65. PubMed ID: 7999299 [Abstract] [Full Text] [Related]
5. Spatial variation in response to odorants on the rat olfactory epithelium. Edwards DA, Mather RA, Dodd GH. Experientia; 1988 Mar 15; 44(3):208-11. PubMed ID: 3350129 [Abstract] [Full Text] [Related]
6. Odor-induced fast waves in the dentate gyrus depend on a pathway through posterior cerebral cortex: effects of limbic lesions and trimethyltin. Heale VR, Vanderwolf CH. Brain Res Bull; 1999 Nov 01; 50(4):291-9. PubMed ID: 10582527 [Abstract] [Full Text] [Related]
7. The neurotoxins colchicine and kainic acid block odor-induced fast waves and olfactory-evoked potentials in the dentate gyrus of the behaving rat. Heale VR, Vanderwolf CH, Leung LS. Brain Res; 1995 Sep 04; 690(2):157-66. PubMed ID: 8535832 [Abstract] [Full Text] [Related]
8. Beta-frequency (15-35 Hz) electroencephalogram activities elicited by toluene and electrical stimulation in the behaving rat. Chapman CA, Xu Y, Haykin S, Racine RJ. Neuroscience; 1998 Oct 04; 86(4):1307-19. PubMed ID: 9697135 [Abstract] [Full Text] [Related]
9. Optical recording of odor-evoked responses in the olfactory brain of the naïve and aversively trained terrestrial snails. Nikitin ES, Balaban PM. Learn Mem; 2000 Oct 04; 7(6):422-32. PubMed ID: 11112801 [Abstract] [Full Text] [Related]
10. Intracellular potentials of salamander mitral/tufted neurons in response to odor stimulation. Hamilton KA, Kauer JS. Brain Res; 1985 Jul 08; 338(1):181-5. PubMed ID: 4027588 [Abstract] [Full Text] [Related]
11. Effects of altered olfactory experiences on the development of infant rats' responses to odors. Terry LM, Johanson IB. Dev Psychobiol; 1996 May 08; 29(4):353-77. PubMed ID: 8732808 [Abstract] [Full Text] [Related]
13. 'Microsmatic' primates revisited: olfactory sensitivity in the squirrel monkey. Laska M, Seibt A, Weber A. Chem Senses; 2000 Feb 08; 25(1):47-53. PubMed ID: 10667993 [Abstract] [Full Text] [Related]
15. Amplification of odor-induced Ca(2+) transients by store-operated Ca(2+) release and its role in olfactory signal transduction. Zufall F, Leinders-Zufall T, Greer CA. J Neurophysiol; 2000 Jan 23; 83(1):501-12. PubMed ID: 10634891 [Abstract] [Full Text] [Related]
20. Discriminating parts from the whole: determinants of odor mixture perception in squirrel monkeys, Saimiri sciureus. Laska M, Hudson R. J Comp Physiol A; 1993 Aug 01; 173(2):249-56. PubMed ID: 8410741 [Abstract] [Full Text] [Related] Page: [Next] [New Search]