These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 9690474

  • 1. A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock.
    Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE, Alster JM, McPherson PS, Campbell KP, Gillette MU.
    Nature; 1998 Jul 23; 394(6691):381-4. PubMed ID: 9690474
    [Abstract] [Full Text] [Related]

  • 2. Voltage-gated calcium channels play crucial roles in the glutamate-induced phase shifts of the rat suprachiasmatic circadian clock.
    Kim DY, Choi HJ, Kim JS, Kim YS, Jeong DU, Shin HC, Kim MJ, Han HC, Hong SK, Kim YI.
    Eur J Neurosci; 2005 Mar 23; 21(5):1215-22. PubMed ID: 15813931
    [Abstract] [Full Text] [Related]

  • 3. Signaling in the mammalian circadian clock: the NO/cGMP pathway.
    Golombek DA, Agostino PV, Plano SA, Ferreyra GA.
    Neurochem Int; 2004 Nov 23; 45(6):929-36. PubMed ID: 15312987
    [Abstract] [Full Text] [Related]

  • 4. Ryanodine-sensitive intracellular Ca2+ channels in rat suprachiasmatic nuclei are required for circadian clock control of behavior.
    Mercado C, Díaz-Muñoz M, Alamilla J, Valderrama K, Morales-Tlalpan V, Aguilar-Roblero R.
    J Biol Rhythms; 2009 Jun 23; 24(3):203-10. PubMed ID: 19465697
    [Abstract] [Full Text] [Related]

  • 5. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME, Gobes SM, Pavlovska I, Su C, Mistlberger RE, Glass JD.
    Eur J Neurosci; 2004 May 23; 19(10):2779-90. PubMed ID: 15147311
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitro.
    Mou X, Peterson CB, Prosser RA.
    Eur J Neurosci; 2009 Oct 23; 30(8):1451-60. PubMed ID: 19811533
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY, Dardente H, Escobar C, Pevet P, Challet E.
    Neuroscience; 2004 Oct 23; 127(2):529-37. PubMed ID: 15262341
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A novel neuronal cell line derived from the ventrolateral region of the suprachiasmatic nucleus.
    Matsushita T, Amagai Y, Terai K, Kojima T, Obinata M, Hashimoto S.
    Neuroscience; 2006 Jul 07; 140(3):849-56. PubMed ID: 16616428
    [Abstract] [Full Text] [Related]

  • 16. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J, Pévet P, Challet E.
    J Neurosci Res; 2009 Feb 15; 87(3):758-65. PubMed ID: 18831006
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The corticotropin-releasing factor (CRF)(1) receptor antagonists CP154,526 and DMP695 inhibit light-induced phase advances of hamster circadian activity rhythms.
    Gannon RL, Millan MJ.
    Brain Res; 2006 Apr 14; 1083(1):96-102. PubMed ID: 16551464
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.