These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 9691575

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. A mathematical model that predicts skeletal muscle force.
    Wexler AS, Ding J, Binder-Macleod SA.
    IEEE Trans Biomed Eng; 1997 May; 44(5):337-48. PubMed ID: 9125818
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Biomimetic model of skeletal muscle isometric contraction: I. an energetic-viscoelastic model for the skeletal muscle isometric force twitch.
    Phillips CA, Repperger DW, Neidhard-Doll AT, Reynolds DB.
    Comput Biol Med; 2004 Jun; 34(4):307-22. PubMed ID: 15121002
    [Abstract] [Full Text] [Related]

  • 5. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW, Ding J, Wexler AS, Binder-Macleod SA.
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [Abstract] [Full Text] [Related]

  • 6. A mathematical model that predicts the force-frequency relationship of human skeletal muscle.
    Ding J, Wexler AS, Binder-Macleod SA.
    Muscle Nerve; 2002 Oct; 26(4):477-85. PubMed ID: 12362412
    [Abstract] [Full Text] [Related]

  • 7. Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle.
    Durfee WK, Palmer KI.
    IEEE Trans Biomed Eng; 1994 Mar; 41(3):205-16. PubMed ID: 8045573
    [Abstract] [Full Text] [Related]

  • 8. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.
    Ding J, Wexler AS, Binder-Macleod SA.
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739
    [Abstract] [Full Text] [Related]

  • 9. The optimal stimulation pattern for skeletal muscle is dependent on muscle length.
    Mela P, Veltink PH, Huijing PA, Salmons S, Jarvis JC.
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):85-93. PubMed ID: 12236451
    [Abstract] [Full Text] [Related]

  • 10. Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries.
    Ding J, Lee SC, Johnston TE, Wexler AS, Scott WB, Binder-Macleod SA.
    Muscle Nerve; 2005 Jun; 31(6):702-12. PubMed ID: 15742371
    [Abstract] [Full Text] [Related]

  • 11. Metabolic costs of isometric force generation and maintenance of human skeletal muscle.
    Russ DW, Elliott MA, Vandenborne K, Walter GA, Binder-Macleod SA.
    Am J Physiol Endocrinol Metab; 2002 Feb; 282(2):E448-57. PubMed ID: 11788378
    [Abstract] [Full Text] [Related]

  • 12. A predictive fatigue model--II: Predicting the effect of resting times on fatigue.
    Ding J, Wexler AS, Binder-Macleod SA.
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):59-67. PubMed ID: 12173740
    [Abstract] [Full Text] [Related]

  • 13. Comparison of isometric and load moving length-tension models of two bicompartmental muscles.
    Vance TL, Solomonow M, Baratta R, Zembo M, D'Ambrosia RD.
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):771-81. PubMed ID: 7927399
    [Abstract] [Full Text] [Related]

  • 14. Does the speed of shortening affect steady-state force depression in cat soleus muscle?
    Leonard TR, Herzog W.
    J Biomech; 2005 Nov; 38(11):2190-7. PubMed ID: 16154405
    [Abstract] [Full Text] [Related]

  • 15. The dynamic response model of nine different skeletal muscles.
    Baratta R, Solomonow M.
    IEEE Trans Biomed Eng; 1990 Mar; 37(3):243-51. PubMed ID: 2328999
    [Abstract] [Full Text] [Related]

  • 16. Impact of initial muscle length on force deficit following lengthening contractions in mammalian skeletal muscle.
    Gosselin LE, Burton H.
    Muscle Nerve; 2002 Jun; 25(6):822-7. PubMed ID: 12115970
    [Abstract] [Full Text] [Related]

  • 17. Changing stimulation patterns improves performance during electrically elicited contractions.
    Scott WB, Binder-Macleod SA.
    Muscle Nerve; 2003 Aug; 28(2):174-80. PubMed ID: 12872321
    [Abstract] [Full Text] [Related]

  • 18. Transcranial magnetic stimulation during voluntary action: directional facilitation of outputs and relationships to force generation.
    Cros D, Soto O, Chiappa KH.
    Brain Res; 2007 Dec 14; 1185():103-16. PubMed ID: 17961516
    [Abstract] [Full Text] [Related]

  • 19. Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation.
    Frankel MA, Dowden BR, Mathews VJ, Normann RA, Clark GA, Meek SG.
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun 14; 19(3):325-32. PubMed ID: 21385670
    [Abstract] [Full Text] [Related]

  • 20. A nonlinear approach to modeling of electrically stimulated skeletal muscle.
    Gollee H, Murray-Smith DJ, Jarvis JC.
    IEEE Trans Biomed Eng; 2001 Apr 14; 48(4):406-15. PubMed ID: 11322528
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.