These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 9698565

  • 1. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O, Vassylyev DG, Tanaka F, Morikawa K, Fujii I.
    J Mol Biol; 1998 Aug 21; 281(3):501-11. PubMed ID: 9698565
    [Abstract] [Full Text] [Related]

  • 2. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M, Ito N, Tsumuraya T, Suzuki K, Sakakura M, Fujii I.
    J Mol Biol; 2007 May 25; 369(1):198-209. PubMed ID: 17428500
    [Abstract] [Full Text] [Related]

  • 3. Structural basis of the transition-state stabilization in antibody-catalyzed hydrolysis.
    Sakakura M, Takahashi H, Shimba N, Fujii I, Shimada I.
    J Mol Biol; 2007 Mar 16; 367(1):133-47. PubMed ID: 17239396
    [Abstract] [Full Text] [Related]

  • 4. Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization.
    Miyashita H, Hara T, Tanimura R, Fukuyama S, Cagnon C, Kohara A, Fujii I.
    J Mol Biol; 1997 Apr 18; 267(5):1247-57. PubMed ID: 9150409
    [Abstract] [Full Text] [Related]

  • 5. Directed evolution governed by controlling the molecular recognition between an abzyme and its haptenic transition-state analog.
    Takahashi-Ando N, Kakinuma H, Fujii I, Nishi Y.
    J Immunol Methods; 2004 Nov 18; 294(1-2):1-14. PubMed ID: 15604011
    [Abstract] [Full Text] [Related]

  • 6. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ, Houk KN.
    J Comput Chem; 2002 Jan 15; 23(1):84-95. PubMed ID: 11913392
    [Abstract] [Full Text] [Related]

  • 7. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM, Olender EH, Arvai AS, Koike CK, Canestrelli IL, Stewart JD, Benkovic SJ, Getzoff ED, Roberts VA.
    J Mol Biol; 1999 Aug 13; 291(2):329-45. PubMed ID: 10438624
    [Abstract] [Full Text] [Related]

  • 8. Structural basis for a disfavored elimination reaction in catalytic antibody 1D4.
    Larsen NA, Heine A, Crane L, Cravatt BF, Lerner RA, Wilson IA.
    J Mol Biol; 2001 Nov 16; 314(1):93-102. PubMed ID: 11724535
    [Abstract] [Full Text] [Related]

  • 9. Crystallographic and biochemical analysis of cocaine-degrading antibody 15A10.
    Larsen NA, de Prada P, Deng SX, Mittal A, Braskett M, Zhu X, Wilson IA, Landry DW.
    Biochemistry; 2004 Jun 29; 43(25):8067-76. PubMed ID: 15209502
    [Abstract] [Full Text] [Related]

  • 10. Crystal structures of the free and liganded form of an esterolytic catalytic antibody.
    Wedemayer GJ, Wang LH, Patten PA, Schultz PG, Stevens RC.
    J Mol Biol; 1997 May 02; 268(2):390-400. PubMed ID: 9159478
    [Abstract] [Full Text] [Related]

  • 11. Crystal structure of the complex of a catalytic antibody Fab fragment with a transition state analog: structural similarities in esterase-like catalytic antibodies.
    Charbonnier JB, Carpenter E, Gigant B, Golinelli-Pimpaneau B, Eshhar Z, Green BS, Knossow M.
    Proc Natl Acad Sci U S A; 1995 Dec 05; 92(25):11721-5. PubMed ID: 8524836
    [Abstract] [Full Text] [Related]

  • 12. A comparison of the crystallographic structures of two catalytic antibodies with esterase activity.
    Buchbinder JL, Stephenson RC, Scanlan TS, Fletterick RJ.
    J Mol Biol; 1998 Oct 09; 282(5):1033-41. PubMed ID: 9753552
    [Abstract] [Full Text] [Related]

  • 13. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.
    Ulrich HD, Schultz PG.
    J Mol Biol; 1998 Jan 09; 275(1):95-111. PubMed ID: 9451442
    [Abstract] [Full Text] [Related]

  • 14. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K, Zhou B, Houk KN, Lerner RA, Shevlin CG, Wilson IA.
    Biochemistry; 1999 Jun 01; 38(22):7062-74. PubMed ID: 10353817
    [Abstract] [Full Text] [Related]

  • 15. Complete reaction cycle of a cocaine catalytic antibody at atomic resolution.
    Zhu X, Dickerson TJ, Rogers CJ, Kaufmann GF, Mee JM, McKenzie KM, Janda KD, Wilson IA.
    Structure; 2006 Feb 01; 14(2):205-16. PubMed ID: 16472740
    [Abstract] [Full Text] [Related]

  • 16. Structural basis for antibody catalysis of a cationic cyclization reaction.
    Zhu X, Heine A, Monnat F, Houk KN, Janda KD, Wilson IA.
    J Mol Biol; 2003 May 23; 329(1):69-83. PubMed ID: 12742019
    [Abstract] [Full Text] [Related]

  • 17. Crossreactivity, efficiency and catalytic specificity of an esterase-like antibody.
    Gigant B, Charbonnier JB, Eshhar Z, Green BS, Knossow M.
    J Mol Biol; 1998 Dec 04; 284(3):741-50. PubMed ID: 9826512
    [Abstract] [Full Text] [Related]

  • 18. Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization.
    Roberts VA, Stewart J, Benkovic SJ, Getzoff ED.
    J Mol Biol; 1994 Jan 21; 235(3):1098-116. PubMed ID: 8289310
    [Abstract] [Full Text] [Related]

  • 19. In vitro abzyme evolution to optimize antibody recognition for catalysis.
    Takahashi N, Kakinuma H, Liu L, Nishi Y, Fujii I.
    Nat Biotechnol; 2001 Jun 21; 19(6):563-7. PubMed ID: 11385462
    [Abstract] [Full Text] [Related]

  • 20. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design.
    Usher KC, Blaszczak LC, Weston GS, Shoichet BK, Remington SJ.
    Biochemistry; 1998 Nov 17; 37(46):16082-92. PubMed ID: 9819201
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.