These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 9701778

  • 1. Effect of rolipram on age-related changes in cyclic AMP-selective phosphodiesterase in the rat brain: an autoradiographic study.
    Kato H, Araki T, Chen T, Itoyama Y, Kogure K.
    Methods Find Exp Clin Pharmacol; 1998 Jun; 20(5):403-8. PubMed ID: 9701778
    [Abstract] [Full Text] [Related]

  • 2. Age-dependent changes in second messenger and rolipram receptor systems in the gerbil brain.
    Araki T, Kato H, Kanai Y, Kogure K.
    J Neural Transm Gen Sect; 1994 Jun; 97(2):135-47. PubMed ID: 7873123
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Age-related effects of rolipram on [3H]quinuclidinyl benzilate and [3H]phorbol 12,13-dibutyrate binding in the rat brain.
    Chen T, Kato H, Araki T, Itoyama Y, Kogure K.
    Tohoku J Exp Med; 1998 Jun; 185(2):107-18. PubMed ID: 9747650
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Age-related changes in [3H]nimodipine and [3H]rolipram binding in the rat brain.
    Araki T, Kato H, Shuto K, Itoyama Y.
    J Pharm Pharmacol; 1997 Mar; 49(3):310-4. PubMed ID: 9231352
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Influence of aging on rolipram-sensitive phosphodiesterase activity and [3H]rolipram binding in the rat brain.
    Tohda M, Murayama T, Nogiri S, Nomura Y.
    Biol Pharm Bull; 1996 Feb; 19(2):300-2. PubMed ID: 8850327
    [Abstract] [Full Text] [Related]

  • 9. Functional and biochemical evidence for diazepam as a cyclic nucleotide phosphodiesterase type 4 inhibitor.
    Collado MC, Beleta J, Martinez E, Miralpeix M, Domènech T, Palacios JM, Hernández J.
    Br J Pharmacol; 1998 Mar; 123(6):1047-54. PubMed ID: 9559885
    [Abstract] [Full Text] [Related]

  • 10. [Localization of cAMP-selective phosphodiesterase in the mammalian eye by (3H)-rolipram].
    Liekfeld A, Kaulen P, Kahle G, Wollensak J.
    Ophthalmologe; 1996 Oct; 93(5):581-5. PubMed ID: 9004885
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Mapping of second messenger and rolipram receptors in mammalian brain.
    Araki T, Kato H, Kogure K.
    Brain Res Bull; 1992 Jun; 28(6):843-8. PubMed ID: 1322228
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway.
    Eckly AE, Lugnier C.
    Br J Pharmacol; 1994 Oct; 113(2):445-50. PubMed ID: 7834194
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Stereospecificity of rolipram actions on eosinophil cyclic AMP-specific phosphodiesterase.
    Souness JE, Scott LC.
    Biochem J; 1993 Apr 15; 291 ( Pt 2)(Pt 2):389-95. PubMed ID: 8387267
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Phosphodiesterase 4 in macrophages: relationship between cAMP accumulation, suppression of cAMP hydrolysis and inhibition of [3H]R-(-)-rolipram binding by selective inhibitors.
    Kelly JJ, Barnes PJ, Giembycz MA.
    Biochem J; 1996 Sep 01; 318 ( Pt 2)(Pt 2):425-36. PubMed ID: 8809029
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.