These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. Dizio P, Lackner JR. J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414 [Abstract] [Full Text] [Related]
3. Rapid adaptation to Coriolis force perturbations of arm trajectory. Lackner JR, Dizio P. J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013 [Abstract] [Full Text] [Related]
5. Congenitally blind individuals rapidly adapt to coriolis force perturbations of their reaching movements. DiZio P, Lackner JR. J Neurophysiol; 2000 Oct; 84(4):2175-80. PubMed ID: 11024106 [Abstract] [Full Text] [Related]
6. Adaptation in a rotating artificial gravity environment. Lackner JR, DiZio P. Brain Res Brain Res Rev; 1998 Nov; 28(1-2):194-202. PubMed ID: 9795214 [Abstract] [Full Text] [Related]
7. Coriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjects. DiZio P, Lackner JR. J Neurophysiol; 2001 Feb; 85(2):784-9. PubMed ID: 11160512 [Abstract] [Full Text] [Related]
8. Rapid adaptation to Coriolis force perturbations of voluntary body sway. Bakshi A, DiZio P, Lackner JR. J Neurophysiol; 2019 Jun 01; 121(6):2028-2041. PubMed ID: 30943090 [Abstract] [Full Text] [Related]
9. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation. DiZio P, Lackner JR. J Vestib Res; 2019 Jun 01; 12(5-6):291-9. PubMed ID: 14501105 [Abstract] [Full Text] [Related]
10. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques. Pigeon P, Bortolami SB, DiZio P, Lackner JR. J Neurophysiol; 2003 Jan 01; 89(1):276-89. PubMed ID: 12522179 [Abstract] [Full Text] [Related]
13. Kinetic analysis of arm reaching movements during voluntary and passive rotation of the torso. Bortolami SB, Pigeon P, Dizio P, Lackner JR. Exp Brain Res; 2008 Jun 01; 187(4):509-23. PubMed ID: 18330550 [Abstract] [Full Text] [Related]
15. Moving objects in a rotating environment: rapid prediction of Coriolis and centrifugal force perturbations. Nowak DA, Hermsdörfer J, Schneider E, Glasauer S. Exp Brain Res; 2004 Jul 01; 157(2):241-54. PubMed ID: 15064877 [Abstract] [Full Text] [Related]
17. Adaptation to Coriolis perturbations of voluntary body sway transfers to preprogrammed fall-recovery behavior. Bakshi A, Ventura J, DiZio P, Lackner JR. J Neurophysiol; 2014 Mar 01; 111(5):977-83. PubMed ID: 24304863 [Abstract] [Full Text] [Related]
20. Online corrective responses following target jump in altered gravitoinertial force field point to nested feedforward and feedback control. Chomienne L, Blouin J, Bringoux L. J Neurophysiol; 2021 Jan 01; 125(1):154-165. PubMed ID: 33174494 [Abstract] [Full Text] [Related] Page: [Next] [New Search]