These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
839 related items for PubMed ID: 9718311
1. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates. Nivière V, Vanoni MA, Zanetti G, Fontecave M. Biochemistry; 1998 Aug 25; 37(34):11879-87. PubMed ID: 9718311 [Abstract] [Full Text] [Related]
2. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ, Scrutton NS, Munro AW. Biochem J; 2003 Jun 01; 372(Pt 2):317-27. PubMed ID: 12614197 [Abstract] [Full Text] [Related]
3. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli. Ingelman M, Ramaswamy S, Nivière V, Fontecave M, Eklund H. Biochemistry; 1999 Jun 01; 38(22):7040-9. PubMed ID: 10353815 [Abstract] [Full Text] [Related]
4. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB, Klein M, Fulco A, Feyereisen R. Biochemistry; 1997 Jul 08; 36(27):8401-12. PubMed ID: 9204888 [Abstract] [Full Text] [Related]
5. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase. Sugiyama T, Miura R, Yamano T. J Biochem; 1979 Jul 08; 86(1):213-23. PubMed ID: 39065 [Abstract] [Full Text] [Related]
6. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase. Knight K, Scrutton NS. Biochem J; 2002 Oct 01; 367(Pt 1):19-30. PubMed ID: 12079493 [Abstract] [Full Text] [Related]
7. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B). Cunningham O, Gore MG, Mantle TJ. Biochem J; 2000 Jan 15; 345 Pt 2(Pt 2):393-9. PubMed ID: 10620517 [Abstract] [Full Text] [Related]
8. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O, Scrutton NS, Munro AW. Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506 [Abstract] [Full Text] [Related]
10. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I, Shaffer C, Ballou DP, Peterson JA. Biochemistry; 1996 Jun 04; 35(22):7058-68. PubMed ID: 8679531 [Abstract] [Full Text] [Related]
11. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry. Wolthers KR, Scrutton NS. Biochemistry; 2004 Jan 20; 43(2):490-500. PubMed ID: 14717604 [Abstract] [Full Text] [Related]
12. Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: insights for catalysis. Lennon BW, Williams CH. Biochemistry; 1996 Apr 16; 35(15):4704-12. PubMed ID: 8664260 [Abstract] [Full Text] [Related]
13. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase. Yamamoto K, Kimura S, Shiro Y, Iyanagi T. Arch Biochem Biophys; 2005 Aug 01; 440(1):65-78. PubMed ID: 16009330 [Abstract] [Full Text] [Related]
14. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex. Reipa V, Holden MJ, Vilker VL. Biochemistry; 2007 Nov 13; 46(45):13235-44. PubMed ID: 17941648 [Abstract] [Full Text] [Related]
15. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors. Zeghouf M, Fontecave M, Macherel D, Covès J. Biochemistry; 1998 Apr 28; 37(17):6114-23. PubMed ID: 9558350 [Abstract] [Full Text] [Related]
16. The NAD(P)H:flavin oxidoreductase from Escherichia coli. Evidence for a new mode of binding for reduced pyridine nucleotides. Nivière V, Fieschi F, Dećout JL, Fontecave M. J Biol Chem; 1999 Jun 25; 274(26):18252-60. PubMed ID: 10373427 [Abstract] [Full Text] [Related]
17. Reductive half-reaction of thioredoxin reductase from Escherichia coli. Lennon BW, Williams CH. Biochemistry; 1997 Aug 05; 36(31):9464-77. PubMed ID: 9235991 [Abstract] [Full Text] [Related]
18. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes. Rosenbaum K, Jahnke K, Curti B, Hagen WR, Schnackerz KD, Vanoni MA. Biochemistry; 1998 Dec 15; 37(50):17598-609. PubMed ID: 9860876 [Abstract] [Full Text] [Related]
19. Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I. Tang CK, Jeffers CE, Nichols JC, Tu SC. Arch Biochem Biophys; 2001 Aug 01; 392(1):110-6. PubMed ID: 11469801 [Abstract] [Full Text] [Related]
20. Is the NAD(P)H:flavin oxidoreductase from Escherichia coli a member of the ferredoxin-NADP+ reductase family?. Evidence for the catalytic role of serine 49 residue. Nivière V, Fieschi F, Décout JL, Fontecave M. J Biol Chem; 1996 Jul 12; 271(28):16656-61. PubMed ID: 8663185 [Abstract] [Full Text] [Related] Page: [Next] [New Search]